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[1] Numerical ocean models are becoming increasingly important tools for marine
research and for management of marine resources. It is therefore crucial that uncertainty
in model predictions and model sensitivity to errors in the model inputs be quantified. We
performed a combined sensitivity and uncertainty analysis for a realistic
physical-biological model of the Texas-Louisiana shelf in the northern Gulf of Mexico.
The model simulates the major physical and biological processes involved in the
formation of the hypoxic zone that develops on the shelf every summer. With the help of
a statistical emulator technique, we introduced uncertainty in selected model inputs and
assessed the effects of these uncertainties on the predicted development and spatial
distribution of bottom hypoxia. The uncertain inputs we examined belong to two
categories: (i) biological inputs including river nutrient concentration, phytoplankton
growth rate and initial and boundary conditions of biological variables, and (ii) physical
inputs including freshwater river runoff, wind forcing, and mixing coefficients. We show
that uncertainty in different inputs has distinct effects on model output which vary in
magnitude, time, and space. Uncertainty in physical inputs was found to have a strong
impact on estimates of hypoxia, e.g., hypoxic area estimates vary by more than 40%, due
to a 20% variation in the freshwater river runoff.
Citation: Mattern, J. P., K. Fennel, and M. Dowd (2013), Sensitivity and uncertainty analysis of model hypoxia estimates for the
Texas-Louisiana shelf, J. Geophys. Res. Oceans, 118, 1316–1332, doi:10.1002/jgrc.20130.

1. Introduction
[2] Quantification of uncertainty is an important part

of numerical modeling. Knowledge of model uncertainty
allows for an assessment of the reliability and precision
of the model and therefore its general usefulness as a tool
for prediction and analysis [Karniadakis and Glimm, 2006].
Model uncertainty is the model error due to incomplete
knowledge of the simulated system, e.g., unknown boundary
or initial conditions due to errors in the model formulation
and equations or due to lack of (computational) resources
to simulate the degree of complexity of the system, e.g., a
low model resolution. Inherently connected to the concept of
model uncertainty is that of model sensitivity which charac-
terizes the response of model output to changes in its input.
A model is said to be sensitive to a particular input if a slight
change in the input triggers a large change in the output. Sen-
sitivity thus contributes to uncertainty in outputs. Typically,
many model inputs are not well known, which, combined
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with model sensitivity, can lead to large uncertainty in model
outputs.

[3] In this study, we performed a combined sensitivity and
uncertainty analysis for a three-dimensional (three spatial
dimensions in addition to the time dimension) physical-
biological model set on the Texas-Louisiana shelf. The
model includes a nitrogen-based biological module cou-
pled with dissolved oxygen dynamics and is described in
Fennel et al. [2011, 2013]. In Fennel et al. [2013], it is
shown that the model reproduces observed hypoxic extent
well for certain configurations. The goal of this study is to
assess the sensitivity of these predicted hypoxia estimates to
model inputs of two categories: (i) biological inputs, includ-
ing one biological parameter (the maximum growth rate of
phytoplankton), biological boundary and initial conditions,
and river nutrient concentration and (ii) physical inputs,
including two parameters controlling subgrid scale horizon-
tal mixing, wind forcing, which can have a significant impact
on the extent of hypoxia [Forrest et al., 2011; Feng et al.,
2012], and the amount of freshwater discharge.

[4] Previous studies of model uncertainty and sensitiv-
ity have focused on physical ocean models [Lermusiaux,
2006; Kim et al., 2010; Thacker et al., 2012]. Sensitivity
analyses are also commonly found in the field of ecosystem
modelling [Clancy et al., 2010; Makler-Pick et al., 2011;
Gibson and Spitz, 2011; Melbourne-Thomas et al., 2011]
but not typically for coupled three-dimensional biological-
physical models. Only a few studies have investigated uncer-
tainty propagation in physical-biological ocean models, e.g.,
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Béal et al. [2010] assessed the effect of mixing errors on
biological properties in a physical-biological model, and
Cossarini et al. [2009] simulate the error dynamics of a
model of the Lagoon of Venice ecosystem using a data
assimilative approach.

[5] Unless uncertainty is directly integrated into the
model [see, e.g., Lermusiaux, 2006], an uncertainty or sen-
sitivity analysis entails many model simulations and is
thus computationally demanding, in particular for three-
dimensional models. Typically, uncertainty analyses repre-
sent input uncertainty via random samples using Monte
Carlo techniques [Clancy et al., 2010; Kim et al., 2010;
Melbourne-Thomas et al., 2011], a computationally ineffi-
cient approach that is not practical for three-dimensional
models. Emulator-based approaches, such as the polynomial
chaos expansion [introduced by Wiener, 1938] which we use
here, offer a computationally more efficient alternative for
propagating uncertainty in model inputs to their outputs [Xiu
and Karniadakis, 2003; Shen et al., 2010; Thacker et al.,
2012]. These techniques sample the input probability distri-
bution in a nonrandom fashion and interpolate model output
in between samples.

[6] Our results highlight the relative importance of the
biological and physical model inputs on hypoxia predictions.
The inputs cause distinct temporal and spatial distributions
in model uncertainty, where high uncertainties are typically
found on the inner shelf region in summer. We show that
model predictions of oxygen concentration, hypoxia, and
surface chlorophyll are sensitive to uncertainty in various
model inputs, especially the physical inputs which perturb
the model’s stochastic flow field. Uncertainties in the inputs
show strong local effects, such as the oxygen concentration
in a specific grid cell, as well as larger scale features, such
as the size of the predicted hypoxic area.

2. Methods
2.1. The Emulator: Polynomial Chaos Expansion

[7] Emulators provide a statistical approximation of
unknown model output based on existing output (here, a
statistical approximation means an approximation that pro-
vides error estimates, see O’Hagan [2006]). Based on the
model output approximation, emulators can be used to prop-
agate uncertainty in model inputs (model parameters, initial
or boundary conditions, physical forcing, etc.) to its out-
puts [Xiu and Karniadakis, 2003; Le Maître et al., 2004].
For this purpose, emulators use output from existing model
simulations that are obtained by varying uncertain inputs.
By interpolating between the existing output values, emu-
lators can estimate model output for new, unknown values
of the inputs and even approximate the probability distribu-
tion of the model output. Polynomial chaos expansion, the
technique we use in this study, is an emulator based on poly-
nomial interpolation (approximation error estimates are not
provided directly but can be derived from convergence prop-
erties, see Thacker et al. [2012]); it has been used previously
with ocean models by Thacker et al. [2012] and Mattern
et al. [2012]. In Mattern et al. [2012], the approximation
feature of polynomial chaos is used to estimate parameter
values for a biological model. In this study, we take advan-
tage of the fact that polynomial chaos allows one to make

approximations of model output probability distributions
and use it to perform an uncertainty analysis.

[8] An introduction to the polynomial chaos technique is
given in Thacker et al. [2012] and Mattern et al. [2012].
Here, we briefly review the main aspects. In the follow-
ing, we consider the stochastic model input � , which can
be, for example, a model parameter or even a scaling fac-
tor for the model’s boundary condition. Because we only
consider variations of single model inputs in this study, we
assume in the following that � is one-dimensional. Although
we do not consider the multidimensional case here, the the-
ory translates in a straightforward manner into two or more
dimensions for multiple inputs [Xiu and Karniadakis, 2002].

[9] Here, the model output of interest is represented by the
function f(x, t, � ). The output may be dependent on space x,
time t, and the uncertain input � . With the polynomial chaos
technique, f is approximated by a basis function expansion
as follows:

f (x, t, � ) =
kmaxX
k=0

ak(x, t) �k(� ) + �trunc(� ), (1)

where ak(x, t) are the expansion coefficients, independent of
the uncertain input � , and the kth basis function �k(� ) is
a polynomial of order k in the parameter space defined by
� . The parameter kmax is the maximum order of polynomi-
als used and determines the accuracy of the approximation,
and �trunc is the truncation error. Without cutoff, i.e., for
kmax =1, the approximation is exact and �trunc(� ) = 0. How-
ever, the number of required model runs grows with kmax,
so that computational constraints force us to use relatively
small values in applications with computationally expensive
models.

[10] The choice of polynomials in equation (1) is depen-
dent on the probability density function (pdf) of the param-
eter � which we denote p(� ). The polynomials are chosen
to be orthogonal with respect to p, and all common distribu-
tions have specific sets of polynomial basis functions [Xiu
and Karniadakis, 2002]. For the beta distribution, which
is used here for its finite support, the corresponding set of
orthogonal polynomials are the Jacobi polynomials, and �k
is the kth Jacobi polynomial.

[11] In order to approximate f in equation (1), the coeffi-
cients ak need to be computed. For this purpose, equation (1)
is rearranged to express the coefficients ak in terms of
f (x, t, � (i)), the model output at each so-called quadrature
point � (i) for i = 0, 1, : : : , kmax (see Xiu and Karniadakis
[2002] for details). This is where existing model output
(kmax + 1 model simulations) are required for the emulator-
based approximation. Once the coefficients have been com-
puted, two important properties of the output distribution,
the expected value and variance of f, are straightforward to
calculate. They are given by

E( f (x, t, � )) = a0(x, t) and (2)

var ( f (x, t, � )) =
nX

k=1

a2
k(x, t) Nk. (3)

Here, Nk =
R

S �k(� )2 p(� ) d� is a normalization factor
specific to the kth polynomial and independent of � ; S is
the support of p (the region where p(� ) > 0). The proper-
ties in equations (2) and (3) are the mean and variance of
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the probability distribution of f based on the distribution of
� . Different inputs will produce different distributions in f;
therefore, mean and variance are dependent on � . Note that
other properties of the probability distribution of f, including
its pdf can also be approximated with the polynomial chaos
expansion (section 2.6).

[12] When the polynomial chaos-based approximation is
expanded beyond a single (one-dimensional) input, the com-
putational cost increases exponentially with the number of
stochastic inputs. As a result, a joint analysis of nine inputs
with polynomials of order kmax would require (kmax + 1)9

model runs, while only (kmax + 1) � 9 would be required
for an individual analysis of each input. Although methods
have been proposed to reduce the number of required
simulations by performing sparse sampling [see, e.g.,
Blatman and Sundret, 2010], we are specifically interested
in the effect of individual inputs on the model under similar
conditions. For this reason, we sample each input distribu-
tion in the same manner but restrict the uncertainty analysis
in this study to one parameter at a time, i.e., we estimate
the univariate distributions of the inputs and not their joint,
multivariate distribution.

2.2. Hypoxia on the Texas-Louisiana Shelf
[13] The Mississippi-Atchafalaya river system is fed by a

vast 3, 220, 000 km2 drainage basin and supplies a high load
of nutrients [recent estimates are at around 1.25 Tg nitro-
gen per year, Aulenbach et al., 2007] to the Texas-Louisiana
shelf. The nutrients fuel phytoplankton growth on the shelf
and contribute to the formation of zones of low-dissolved
oxygen in bottom waters [Rabalais et al., 2002; Dagg and
Breed, 2003]. Oxygen is depleted when sinking organic
material is remineralized by bacteria-consuming oxygen in
the process. In summer, when the water is highly strati-
fied limiting oxygen resupply to the bottom waters, zones
of low oxygen form. These zones are considered hypoxic
when oxygen concentrations fall below a critical threshold
of 63 mmol O2 m–3 (the equivalent of 2 mg L–1) that is con-
sidered harmful to many marine organisms. In fall, when
water column stratification is eroded by cooling and increas-
ing winds, the hypoxic area begins to shrink and disappears
before reforming the following year. Hypoxia on the Texas-
Louisiana shelf has been subject to many studies; a recent
overview is given by Bianchi et al. [2010].

2.3. Model Description
[14] We are using the physical-biological model described

in Fennel et al. [2011, 2013], its domain is shown in
Figure 1. The model is based on the Regional Ocean Model-
ing System [Haidvogel et al. 2008] configured for the Texas-
Louisiana shelf as described in Hetland and DiMarco [2008,
2012] and uses the biological model component of Fennel
et al. [2006] with an additional variable for dissolved oxy-
gen [Fennel et al., 2013]. The main objective of the model is
to simulate the biological nitrogen cycle and the distribution
of dissolved oxygen over the Texas-Louisiana shelf which
is heavily influenced by freshwater discharge and nutrient
input from the Mississippi and Atchafalaya rivers [Bianchi et
al., 2010; Laurent et al., 2012]. In addition to dissolved oxy-
gen, the biological model component contains two variables
for dissolved inorganic nitrogen (nitrate and ammonium),
one variable to represent phytoplankton, one to represent
zooplankton, and two detritus variables (small, suspended,
and large, fast-sinking detritus). The model also contains a
chlorophyll variable, allowing for the simulation of photoac-
climation, adjustments to the phytoplankton’s chlorophyll
content.

[15] In the following, we provide a short overview with
a focus on two model configurations for sediment oxy-
gen consumption and the model inputs important for this
study. For more detailed information of the model, see
Fennel et al. [2011].
2.3.1. Instant Remineralization (IR) and Sediment
Oxygen Consumption (SOC) Model Configurations

[16] As shown in Fennel et al. [2013], oxygen consump-
tion by the sediments is a significant oxygen sink contribut-
ing to the development of hypoxia in our study region. Since
the choice of parametrization for this process can have a
large impact on hypoxia predictions, we use two different
parametrizations here: instantaneous remineralization (IR),
and the parametrization of sediment oxygen consumption
(SOC) by Hetland and DiMarco [2008]. In the IR con-
figuration, as the name suggests, sinking organic material
is remineralized instantaneously when it reaches the sedi-
ments, leading to a consumption of oxygen in the bottom
waters above. This approach has the advantage of making
oxygen consumption dependent on the amount of organic
matter that reaches the sediment, yet has the disadvantage of
speeding up the process of remineralization which in reality

Figure 1. The model domain and its bathymetry. The Mississippi delta and mouth of Atchafalaya Bay
are marked by brown circles with “M” and “A”, respectively.
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leads to a slower but longer lasting consumption of oxygen.
In the SOC configuration, sediment oxygen consumption
and nutrient production are parametrized based on obser-
vations and dependent on temperature and water oxygen
concentration only. Consumption of oxygen in the sediments
is assumed to occur only in water depths shallower than 50 m
in the SOC configuration. This approach is able to simulate
a more steady, slow consumption of oxygen; yet the oxygen
flux is independent of the flux of organic matter to the sed-
iments and thus decoupled from the supply of nutrients. In
Fennel et al. [2013], it is shown that both treatments produce
reasonable estimates of the hypoxic zone; thus, we examine
both the IR and the SOC model configurations and test their
response to uncertainty in the inputs.

2.4. Model Inputs of Interest
[17] The model inputs to which we introduce uncertainty

are listed in Table 1; all variations were introduced as sim-
ple scalings. For example, uncertainty is introduced into the
spatially and temporally varying wind field by multiplying
it with a scaling factor, a scalar random variable, described
in section 2.4.1 below. The univariate distribution of the
scaling factor can be approximated at much lower computa-
tional cost than a multidimensional distribution which would
be required to represent temporal or spatial variations in
the input uncertainty. An alternative approach that would
allow for the variation of multidimensional inputs would
be a dimension reduction, e.g., via principal component
analysis and subsequent variation of the lower dimensional
representation [Thacker et al., 2012].

[18] We selected these specific model inputs because they
represent some of the least known inputs that we suspect
would have a noticeable effect on the biological model
output. We decided to include both physical and biolog-
ical model inputs to compare their relative effects. The
phytoplankton maximum growth rate was selected as the
only representative of the biological parameters because we
wanted to include a wider variety of inputs.
2.4.1. Input Distributions

[19] Since the aim of this study is to quantify and com-
pare the effect of uncertainty in various model inputs,
we applied the same relative amount of variation to each
of the inputs. That is, we used a distribution with a
constant ratio of standard deviation/mean for all inputs.
While these input uncertainties do not reflect our best
knowledge of the real uncertainty of the inputs (although
accurate uncertainty estimates would be hard to obtain
for most of them), this approach allows for straightfor-
ward, objective comparison of the effect on the output
uncertainty and is analogous in its approach to sensitivity
analyses.

[20] As mentioned above, all variations in the input are
based on the variation of a scaling factor that is multiplied
with the input quantity, e.g., the amount of river discharge.
For a scaling factor that is equal to one, we obtain the
baseline model simulation with standard parameters, which
represents the scenario we consider most likely. Departure
of the scaling factor from one creates perturbations in the
model, relative to the baseline results.

[21] For our experiments, we assumed a beta distribution
with a scaled support that allows for values of the scaling

Table 1. The Model Inputs That Are Varied in Our Experiments

Name Abbreviationa Description

River N load and discharge river Variation in freshwater discharge
including all constituents such as nutrients
(NO3 and NH4) and detritus.
The variations are introduced to both the
Mississippi and the Atchafalaya rivers.

Freshwater discharge disch Variation in the freshwater discharge
excluding the chemical and biological
constituents which are held at the same loads.
Variations are introduced in the discharge
of the Mississippi and the Atchafalaya rivers.

River N load river nut Variation in the river nutrient
(NO3 and NH4) loads while the
freshwater discharge is unchanged.

Phytoplankton maximum growth rate �0 Variation in the maximum growth
rate of phytoplankton, one of the parameters
governing the nitrogen cycle
in the biological model.

Nutrient initial conditions nut ini Variation in the initial conditions
for the two biological nutrients
NO3 and NH4.

Nutrient boundary conditions nut bry Variation in the boundary conditions
for the two biological
nutrients NO3 and NH4.

Horizontal diffusivity hdiff Variation in the horizontal
mixing coefficient for tracer variables.b

Horizontal viscosity hvisc Variation in the horizontal
mixing coefficient for momentum.b

Wind wind Variation in wind speed over the entire model domain.

aUsed in figures.
bThe horizontal mixing coefficients provide a parametrization of subgrid scale horizontal mixing.
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factor between zero and two. The scaled beta distribution has
the probability density function

p(x) =
1
2

� 1
2 x
�˛–1 �1 – 1

2 x
�ˇ–1

B(˛,ˇ)
for x 2 ]0, 2[. (4)

Here, ˛ and ˇ are the positive parameters that determine the
shape of p, and B(˛,ˇ) =

R 1
0 x˛–1(1 – x)ˇ–1dx is the beta

function which acts as a normalizing constant. We only con-
sider beta distributions with parameters ˛ = ˇ > 1 which
results in symmetric distributions with mean values of one
and with variances that can be adjusted via ˛ and ˇ. For this
study, we select a standard deviation of 0.2; the resulting dis-
tribution is similar to a normal distribution with equal mean
and standard deviation (Figure 2). One advantage of the beta
distribution is that it is truncated and thus does not allow
for scaling factors less than zero. The beta distribution also
comes with its associated set of orthogonal polynomials, the
Jacobi polynomials [Xiu and Karniadakis, 2003].

2.5. Shannon Entropy as a Measure of Uncertainty for
Model Hypoxia

[22] A parcel of water is defined as hypoxic if its dis-
solved oxygen concentration is below the critical threshold
of 63 mmol O2 m–3. In the model, the hypoxic area com-
prises all grid cells with an oxygen concentration below the
threshold. If we consider a single grid cell at a fixed point
in time, then it can be in one of two states: hypoxic or not
hypoxic. When uncertainty is introduced into the model,
each grid cell has a certain probability of being hypoxic. The
aim is to identify a suitable measure to quantify the uncer-
tainty of the state of the grid cell. If the probability of being
hypoxic is zero, then it is certain that the grid cell is not
hypoxic, and the measure of uncertainty should be zero to
indicate that there is no uncertainty. For the same reason,
the measure of uncertainty should be zero if it is certain that
hypoxia is occurring and the probability of being hypoxic is
one. In all other cases, our uncertainty measure should be
greater than zero and should reach its maximum when both
hypoxia and no hypoxia have equal probability, i.e., when
the probability of hypoxia is 1

2 .
[23] The Shannon entropy introduced in Shannon [2001]

(originally published in 1948) is a measure of uncertainty
that fulfils the above criteria and is defined for a discrete
random variable X that has n possible values x1, x2, : : : , xn as

H(X) = –
nX

i=1

pi logb(pi). (5)

Here, pi = Prob(X = xi) is the probability of X taking the
value xi, and b is the base of the logarithm and can be cho-
sen based on the application. If any of the pi = 0, then the
product pi logb(pi) = 0 as well.

[24] In this application, X is the state of a grid cell
which can take one of n = 2 values: x1 = “hypoxia” and
x2 = “no hypoxia”. We let phypox = p1 be the probability of X
being hypoxic and choose b = 2. Then, the Shannon entropy
simplifies to

H(X) = –phypox log2(phypox) – (1 – phypox) log2(1 – phypox). (6)

Figure 2. (a) The pdf of the scaled beta distribution in
comparison to a normal distribution and (b) an example of
polynomial chaos-based approximation on the same [0, 2]
interval. Both pdfs in Figure 2a have equal mean (1.0) and
standard deviation (0.2); the beta pdf is zero beyond the
[0, 2] interval, whereas the support of the normal distribu-
tion is not limited. The thick, grey sine wave in Figure 2b
represents an example function f to be approximated by
polynomial chaos (equation (1)). Cyan circles and green
squares mark the seven and nine polynomial chaos quadra-
ture points, respectively, at which the pdf was sampled
in the polynomial chaos expansion (in Figure 2a) and at
which exact estimates of f are obtained (in Figure 2b). The
solid cyan and green lines in Figure 2b show the polyno-
mial chaos-based approximations of f for seven and nine
quadrature points, respectively. The effect of using fewer
basis functions by lowering kmax on the seven quadra-
ture point approximation of f is illustrated by the dotted
lines in Figure 2b. Note that (in Figure 2b) approximation
errors can be very large outside the range of quadrature
points but that (in Figure 2a) these regions have very small
probability values.

The above expression is shown in Figure 3a as a function of
phypox and behaves as desired: If the probability of hypoxia
is zero (phypox = 0) or one (phypox = 1), then the Shannon
entropy is zero. In between, the Shannon entropy is greater
than zero and at phypox = 1

2 reaches its maximum value of
one. It has been shown generally that the Shannon entropy
fulfils the criteria expected from a measure of uncertainty for
a discrete random variable [Shannon, 2001; Jaynes, 1957].
In this study, we will use its binary form, equation (6), and
refer to it simply as entropy. We will also frequently use
the term uncertainty instead of entropy when referring to the
property of the model hypoxia estimates.
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Figure 3. (a) Hypoxia entropy (black line) and (b) error
in hypoxia entropy (solid lines) as a function of phypox, the
probability of hypoxia. The dotted lines in Figure 3a mark
the values of phypox that are used in Figures 10 and 11. The
dashed lines in Figure 3b depict an error of 0.1 in phypox
in form of an underestimation (green) and overestimation
(red) due, e.g., to truncating the polynomial chaos expan-
sion. (Due to restricting phypox to values between zero and
one, underestimation and overestimation errors are below
0.1 for phypox < 0.1 and phypox > 0.9, respectively.) The solid
lines show the resulting error in the entropy propagated via
the functional relationship in Figure 3a (equation (6)). While
the error in phypox is constant, the error in hypoxia entropy
is reduced for phypox close to 0.5 and amplified as phypox
approaches zero or one.

2.6. Estimating Properties of the Output Distribution
[25] After performing the required model simulations

(performed for the input values at the quadrature points; see
section 2.1, Figure 2a), we obtained the model outputs at the
quadrature points. These outputs represent samples from the
probability distribution of the model output (for a graphical
example, see Figure 2). Our goal is to estimate properties of
the output distribution from these samples. The polynomial
chaos expansion offers a straightforward and numerically
efficient way to estimate the mean and standard deviation
of the output distribution (equations (2) and (3)). However,
other properties we are interested in, such as the median,
other quantiles, and the entropy, cannot be obtained in such
an efficient way. Instead, we have to resort to a procedure of
interpolation and binning for their approximation.

[26] In the following, we consider a scalar model output
f(� ) that is dependent on the univariate model input � ; �
could, for example, be a model parameter. The procedure

below describes the approximation of pf(f(� )), the pdf of the
model output, based on p(� ), the pdf of � . For higher dimen-
sional model output, the procedure needs to be repeated for
every entry in the output vector or matrix.

[27] (i) Create a fine equidistant grid in parameter space,
covering values of � where p(� ) is greater than zero (in
practice, greater than a small positive number). Let � grid

i for
i = 1, 2, : : : , n denote the resulting n grid points. For this
application, we select n = 1000.

[28] (ii) Interpolate the model output in parameter space,
i.e., estimate Of(� ) � f(� ) based on known output at the
quadrature points.

[29] (iii) Form pairs of Of and p for each grid value, i.e.,�
Of
�
�

grid
i

�
, p
�
�

grid
i

��
for i = 1, 2, : : : , n.

[30] (iv) Bin the values of Of
�
�

grid
i

�
for i = 1, 2, : : : , n into

m bins (nonoverlapping intervals). Let xj for j = 1, 2, : : : , m+
1 be the limits of the bins. Based on the number of grid points
n, we select m = 100 (see notes below).

[31] (v) Sum the probability values associated with each
bin, i.e., compute

Osj =
X

i : xj�Of
�
�

grid
i

�
<xj+1

p
�
�

grid
i

�
for j = 1, 2, : : : , m.

[32] (vi) Finally, normalize the sums to obtain sj = OsjPm
k=1 Osk

,
which is an approximation of the probability of the model
output being in the jth bin, i.e., sj �

R xj+1
xj

pf(x)dx. At this

point, we have associated model output values with proba-
bility values. After the normalization in step (vi), we have
obtained an estimated pdf for the output. This pdf can then
be used to obtain the desired distribution properties. In prac-
tice, we used m = 100 bins of equal size to cover the interval
between minimum and maximum value of the interpolated
model output (step (iv)) in conjunction with n = 1000 grid
points (step (i)). An increase in the number of bins typically
requires a finer grid with more points.

[33] For the purpose of estimating the entropy of a binary
event (such as model oxygen below the hypoxic threshold;
see section 2.5), it is sufficient to use two bins in step (iv) so
that all output values below the threshold are collected in the
first bin. After the normalization step (vi), the sum of input
pdf values in the first bin is an estimate of the probability of
the event having the first of two possible outcomes (in our
example, an oxygen concentration below the threshold).

[34] We tested the above procedure by estimating the
mean and standard deviation of multiple distributions of
different model outputs and comparing the values with
the estimates obtained directly from the polynomial chaos
expansion. These estimates differ by at most 0.005% in our
tests and thus agree to the precision that is relevant to this
study. Note that the above procedure can be replaced by a
Monte Carlo procedure based on random samples obtained
from the emulator approximation. However, we found the
Monte Carlo procedure to be less efficient as it required
a larger sample size and thus more computing time. No
matter which of the aforementioned procedures is used to
turn the model output into estimates of the model distribu-
tion, the limiting factor for their accuracy is typically the
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Figure 4. Comparison of emulator-based estimates of the probability of (a–c) bottom hypoxia and (d–f)
the bottom oxygen concentration for seven and nine quadrature points (qp) at a day in mid-July for instant
remineralization (IR) configuration. The scatter plots depict uncertainty in the model output due to uncer-
tainty in river, one of the physical inputs, and �0, a biological input. In the scatter plots, distance from the
diagonal is emphasized by color intensity. For the physical input, which displays a higher emulator error,
the maps (b and e) visualize the spatial location of the values with high variation (the colors correspond
to those in the scatter plot Figures 4a and 4d, respectively).

number of quadrature points. More terms in the polynomial
chaos expansion in combination with more quadrature points
lead to a smaller error in the interpolation and more accu-
rate estimates, but they also require more model simulations
(section 2.1, Xiu and Karniadakis [2002]).

2.7. Uncertainty in Emulator Estimates
[35] The emulator approximation of model output

contains the truncation or interpolation error �trunc(� )
(equation (1)). To estimate the magnitude of this error for
the biological output and the derived uncertainty estimates
(section 2.6), we compared the emulator estimates for two
different numbers of quadrature points, i.e., for two different
values of kmax. Based on the experiments in Mattern et al.
[2012] with seven quadrature points, we selected kmax = 6
and 8 which corresponds to emulator approximations based
on seven and nine quadrature points, respectively. For both
values of kmax, we obtained the emulator approximations
for most model inputs (section 2.4). (We did not obtain
approximations for the nutrient initial conditions and nutri-
ent boundary conditions inputs based on nine quadrature
points. These inputs have such a low effect on the out-
put (see, e.g., results in Figure 6) that we feel confident
that seven quadrature points are sufficient for the emulator
approximation.)

[36] If the model is well-approximated by the emulator,
then the change from seven to nine quadrature points should
be accompanied by a small reduction in the truncation error
and little change in the output estimates. Output estimates
that vary considerably indicate that the output is not approx-
imated well by the emulator with seven quadrature points
(a large change in �trunc(� ) would indicate that the sum in
equation (1) is not close to converging and thus even nine
quadrature points are not sufficient).

[37] By comparing selected uncertainty estimates that are
based on the emulator approximations for seven and nine
quadrature points, we found that the truncation error varied
considerably among different inputs. Based on the magni-
tude of the error, we can divide the inputs into two distinct
classes. The first class consists of inputs that induce changes
into the biological model directly and do not affect the physi-
cal model (e.g., biological parameters, biological initial, and
boundary conditions). The effect of these inputs is well-
approximated by the emulator, and the seven and nine point-
based uncertainty estimates are very similar (Figure 4). The
second class of inputs consists of those that change the
physics of the model and thereby indirectly alter the biol-
ogy (e.g., both river runoff scenarios, diffusivity, and wind).
The biological model output appears to be very sensitive to
changes in these parameters, and the emulator-based approx-
imation is not precise at different locations and varies greatly
between seven and nine quadrature points (Figure 4). High
uncertainties in the emulator estimates are constrained to
regions along the coast and are especially evident close to the
location of the Mississippi Delta and Atchafalaya Bay. Here,
the increase in the number of quadrature points from seven
to nine can lead to a notable increase in the estimated proba-
bility of hypoxia in one grid cell, accompanied by a notable
decrease in a neighboring cell. Our results in section 3 show
that these regions of elevated emulator uncertainty are highly
dynamic and also exhibit the highest model uncertainty, a
finding that is discussed in section 4.
2.7.1. Propagation of Uncertainty Into Entropy
Estimates

[38] In light of the high uncertainty for some of the
emulator-based estimates of the probability of hypoxia
(Figure 4), it is important to note how the emulator’s
truncation error propagates from probability estimates to
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entropy estimates (section 2.5). Due to the log transfor-
mation in equation (6), the error in entropy estimates is
increased for probability estimates close to zero or close to
one (corresponding to low entropy values; see Figure 3),
whereas entropy errors are diminished at probability values
close to 0.5 (corresponding to high entropy values). Low
entropy values therefore have a higher uncertainty than high
entropy values.

3. Results
[39] Uncertainty propagates through the model equations

and leads to distinct expressions of uncertainty in the differ-
ent model outputs. Because they are of high importance, we
focus our analysis on bottom oxygen and bottom hypoxia.
In order to also gain an understanding of the expression
of uncertainty at the surface, we close this section with an
examination of uncertainty in the model’s surface chloro-
phyll predictions.

3.1. Baseline Oxygen Dynamics Without Uncertainty
[40] First, we briefly describe the simulated oxygen

dynamics without introduced uncertainty for the SOC and
the IR configurations. We focus the description on the
temporal development of dissolved oxygen at a location on
the shelf between the Mississippi Delta and the mouth of
Atchafalaya Bay (from here on simply referred to as the
station, see star in Figure 5a) and a spatial snapshot of
bottom oxygen across the model domain on 17 July 2004, a
time when the simulated hypoxic zone typically reaches one
of its largest extents (Figure 5).

[41] Bottom water oxygen concentration at the station
shows a decline throughout the spring of 2004, beginning in

April. The decline is briefly interrupted by several mixing
events that deliver oxygen-rich surface water to the bot-
tom. Both SOC and IR models show hypoxic conditions
at the sea floor in late May and strongly hypoxic condi-
tions throughout most of July and the first half of August.
In mid-August, strong mixing increases bottom oxygen and
leads to nonhypoxic conditions. At the station location, the
IR configuration exhibits more persistent hypoxic condi-
tions with lower oxygen levels in comparison to the SOC
model which switches more frequently between hypoxic and
nonhypoxic conditions.

[42] Hypoxic areas extend along the coast downstream of
the Mississippi Delta and Atchafalaya Bay in both model
configurations (Figures 5a and 5b). In the SOC configura-
tion, the hypoxic area appears less homogeneous and more
fractured in comparison to the IR configuration, and the SOC
bottom oxygen concentration field shows more small scale
variability. For a comparison with observations, see Fennel
et al. [2013].

3.2. Uncertainty in Bottom Oxygen
[43] We now describe the effect of uncertainty in model

inputs on model outputs (section 2.4), focusing first on bot-
tom oxygen concentrations at the station. The probability
distribution of bottom oxygen and its seasonal development
is characterized by quantiles which we averaged over peri-
ods of 3 months (Figure 6). (Note that, in comparison to
quantiles of the time-averaged distribution, i.e., calculat-
ing the time-average first, then the quantiles, these time-
averaged quantiles are influenced less by days of extremely
high or low oxygen concentrations. They therefore provide a
better representation of an average day within each 3 month

Figure 5. Snapshots of the simulated bottom oxygen concentration on 17 July 2004 for the (a) SOC
and (b) IR configurations and (c and d) corresponding time-depth plots of the oxygen concentration at
the station marked by the blue star in between the Mississippi Delta (brown circle with “M”) and mouth
of Atchafalaya Bay (brown circle with “A”). Gray and black colors mark hypoxic areas with oxygen
concentrations below 63 mmol O2 m–3.
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Figure 6. Three-monthly (time-averaged) quantiles of the bottom oxygen concentrations at the station
marked in Figure 5 for 2004 (3 month periods are separated by background color; JFM = “January,
February, March”, etc.). Each bar marks the regions between 0.1 and 0.9 quantiles (outer bar), between
the 0.25 and 0.75 quantiles (inner bar), and the median (solid black line) for one uncertain input. The blue
solid line in the background marks the development of bottom oxygen in the baseline simulation without
uncertainty; its 3 month averages are displayed as horizontal green lines.

period.) Based on the interquartile range (the difference
between the 0.75 and 0.25 quantiles), which characterizes
the dispersion of the output distribution, we found that the
effect of the different inputs varies considerably, and their
effect shows a strong seasonal dependence.

[44] Uncertainties in the wind forcing, the main driver of
vertical mixing, have the strongest effect on bottom oxygen
for both model configurations. Effects of similar magnitude
are caused by the horizontal mixing coefficients (hdiff, hvisc;
these abbreviations for the inputs are defined in Table 1) and
the freshwater river runoff (included in both river and disch).
In contrast, nutrient initial and boundary conditions have lit-
tle to no impact on the bottom oxygen concentration at the
station. The phytoplankton growth rate (�0) and the river
nutrient input (river nut) are the only inputs that have a dis-
tinctly different effect on the two model configurations. As
expected, their effect is relatively strong in the IR configu-
ration because sediment oxygen consumption is determined
by sinking organic material, in contrast to the SOC con-
figuration where oxygen consumption is largely decoupled
from the biological nutrient cycle. Some of the probabil-
ity distributions in Figure 6 exhibit considerable skewness
and a deviation of the median from the baseline (based on
the model without uncertainty; dotted blue line in Figure 6),
which are due to nonlinearities in the model.

[45] The time dependence of the effect of the uncertain
inputs is consistent across inputs for both model configura-
tions. From April through September, the effect of the inputs
on bottom oxygen is considerably higher than during the rest
of the year. The reason for the low effect early and late in

the year is that temperatures are lower and the ocean is well-
mixed, a model behavior that cannot be disrupted by the
uncertainty in the input we prescribed.

3.3. Entropy of Hypoxia
3.3.1. Temporal Development of Entropy

[46] The entropy of hypoxia quantifies the uncertainty in
model hypoxia estimates and reaches its highest value if
the probability of hypoxia is 0.5 (section 2.5). The entropy
is low for most of the year and near the ocean surface
(Figure 7). In these cases, hypoxia uncertainty is small due
to a low probability of hypoxia; variation of the model inputs
has a very low probability of causing hypoxia near the sur-
face or when the water column is well mixed in fall and
winter. High entropy values and therefore high uncertainty
are only found close to the bottom and from mid-May to
mid-September, in the times and places where hypoxia is
likely to occur. Here, the SOC and IR model configurations
show some differences.

[47] In the SOC configuration, the inputs that have a
strong effect on bottom oxygen (see previous section 3.1)
cause high uncertainties in bottom hypoxia from June
through September. The maximum likelihood region of
hypoxia, comprised of the model’s bottom grid cell where
the probability of hypoxia is greater than 0.5 (region outlined
in green in Figure 7), varies strongly among different model
inputs (compare Figures 7a–7d) and is characterized by high
entropy values. Thus, estimates of the number and duration
of hypoxic events that the station experienced in 2004 are
highly uncertain. This, of course, is only true for the model
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Figure 7. Time-depth plots of hypoxia entropy for selected inputs in the (a–d) SOC and (e–k) IR config-
urations for the station marked in Figure 5. (a and e) The large panels show the development of entropy
for the entire year 2004, and smaller panels focus on the time span from mid-May to mid-September
(marked by the blue vertical lines). Regions outlined in green have a probability > 0.5 of being hypoxic.
The inputs that are not shown in this figure typically exhibit low uncertainty in oxygen estimates and have
small entropy values close to zero. (k) As a representative of these inputs, we have included the nutrient
initial conditions input.

inputs that have a strong effect on bottom oxygen, but not for
those with low effects such as the nutrient initial conditions
(the effect of variations in the initial nutrients for the IR con-
figuration is included in Figure 7k; in the SOC configuration,
entropy values are equally low).

[48] The IR model configuration results in stronger,
more persistent hypoxic events at the station (Figure 5d)
which correspond to larger maximum likelihood regions
(Figure 7e–7k). Some inputs, such as the river runoff
(Figure 7f), exhibit low entropy values within the maxi-
mum likelihood region; these correspond to points where the
model is nearly certain that hypoxia will occur.

[49] To summarize the temporal development of entropy,
we obtained 3 month averages of bottom hypoxia entropy at
the station (Figure 8). In both model configurations, uncer-
tainties due to variation of inputs are close to zero early
in the year and become significantly larger in April. Dur-
ing the second half of the year, uncertainties are larger in

the SOC configuration compared to the IR, with the excep-
tion of those caused by the �0 and river nut inputs which
are generally lower in the SOC configuration due to the
weaker coupling between the nitrogen cycle and sediment
remineralization (the biological model component affects
the sediment oxygen consumption in the SOC configuration
through the bottom oxygen concentration only). Generally,
uncertainty values of bottom hypoxia correspond well to
the variations caused in the bottom oxygen concentrations
(Figure 7).
3.3.2. Spatial Distribution of Entropy

[50] The spatial distribution of hypoxia entropy in mid-
July (Figure 9) corresponds well to our previous observa-
tions: Outer shelf regions exhibit low uncertainty and a low
probability of hypoxia; high entropy values occur on the
inner shelf and mostly along the fringe of the maximum
likelihood hypoxic area. The maximum likelihood hypoxic
area contains low entropy values; these correspond to high
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Figure 8. Three-monthly (time-averaged) bottom hypoxia entropy values for the (a) SOC and (b) IR
configurations at the location of the station marked in Figure 5.

probabilities of hypoxia. The station (blue star in Figure 9)
is in the fringe of the high entropy region which explains
the high uncertainty values in the temporal development
observed previously (Figure 7).

[51] Consistent with hypoxia predictions in the baseline
simulations, the SOC model configuration shows a less
homogeneous and more fractured region of high entropy
compared to IR (compare SOC Figures 9a–9d to IR
Figures 9e–9i). All model inputs create a region of low
entropy within the maximum likelihood hypoxic area close
to the Mississippi Delta and mouth of Atchafalaya Bay.
These correspond to a high probability of hypoxia and
low uncertainty.

[52] Based on the spatial maps of hypoxia probability, we
computed bounds for the size of the hypoxic area on 17 July
2004 (Figure 10). For this purpose, we summed the areas
of the model grid cells with a probability of hypoxia greater
than a given threshold. For a threshold of 0.5, we obtained
the maximum likelihood area of hypoxia. Other thresholds
can define uncertainty estimates for the size of the hypoxic
area. For example, the interval in between the thresholds of
0.6 and 0.4 corresponds to the size estimate of the area with
entropy values � 0.97 (Figure 3a). The wind input, both
river inputs and the horizontal mixing coefficients induce
wide ranges into the size estimates, especially in the SOC
model configuration. For example, for the river inputs river
and disch, the area between the 0.6 and 0.4 probability
thresholds is greater than 5000 km2, more than 40% of the
maximum likelihood estimate (Figure 10a). In the SOC con-
figuration, the sizes of the maximum likelihood areas for the
high uncertainty inputs also deviate strongly from the esti-
mates of the baseline simulation without uncertainty. Here,
it is most apparent that the symmetric distribution of the
uncertain input can lead to a highly skewed response in
the model.

[53] In summary, some inputs result in large uncertainty
in hypoxia predictions, while two inputs (nutrient initial and

boundary conditions) have nearly no effect on bottom oxy-
gen. Uncertainty in hypoxia predictions is temporally and
spatially constrained to when and where hypoxia occurs,
e.g., variation of model inputs cannot induce hypoxic condi-
tions when the water column is well mixed.

3.4. Comparison of Hypoxic Area Estimates
With Observations

[54] For the freshwater discharge, one of the inputs the
hypoxia predictions are most sensitive to, we derived a mul-
tiyear time series of hypoxic extent (Figure 11). The time
series exhibits an annual cycle, with hypoxia typically disap-
pearing from November to March and reaching its maximum
extent in late July or August. The uncertainty in the simu-
lated hypoxic extent displays a seasonal cycle, as well, with
high uncertainty during the summer months and small uncer-
tainty at times of small hypoxic area estimates. The deviation
of the median size of the hypoxic area from the baseline sim-
ulation, which was already observed in Figure 10, persists
throughout the four years of simulation.

[55] Using the time series, we perform a qualitative com-
parison with hypoxic area estimates obtained from obser-
vations from the LUMCON cruises [Rabalais et al., 2007]
for the years 2004–2007 (black bars in Figure 11). In the
years 2004 and 2006, both the maximum likelihood esti-
mate and the baseline simulation estimate agree with the
observation-based estimate (Figure 11a and 11c). In 2005,
the baseline simulation is close to the observations, while
the simulation with uncertainty yields lower estimates of the
hypoxic area so that the observations lie outside of the region
with hypoxia probability of 0.25 or higher (Figure 11b).
In 2007, the simulation with uncertainty again underesti-
mates the size of the hypoxic area, yet the observations are
within the region of hypoxia probability greater than 0.25
(Figure 11d). In other words, by extending the maximum
likelihood hypoxic area to the area that has a probability
of hypoxia of 0.25 or higher (based on the uncertainty in

1326



MATTERN ET AL.: UNCERTAINTY IN MODEL HYPOXIA

Figure 9. Spatial maps of bottom hypoxia uncertainty (entropy) for selected inputs to the SOC and IR
configurations on 17 July 2004. Regions outlined in green have a probability > 0.5 of being hypoxic. The
bottom row of panels displays inputs with low entropy values and (j and l) the SOC and IR river input
maps which are nearly identical to (a and e) their respective disch input maps. (a) The blue star marks the
station corresponding to the time-depth plots in Figure 7; the Mississippi Delta and mouth of Atchafalaya
Bay are marked by brown circles with “M” and “A”, respectively.

the freshwater discharge), the prediction corresponds to the
observation-based estimate. Uncertainties in the freshwater
discharge could help explain the model misfit here.

[56] It should be noted that the observational estimates
contain an error as well due to nonsynopticity in the obser-
vations, sampling error in the spatially and temporally
varying field, and the error associated with interpolation.
Nevertheless, simple analyses like this can help to gain an
understanding of model error sources and their effect on
model output.

3.5. Uncertainty in Surface Chlorophyll Estimates
[57] In order to assess the expression of uncertainty in

model variables not directly related to oxygen, we briefly
focus on the surface chlorophyll estimates of the model. Sur-
face chlorophyll is often used in data assimilation and model
validation applications due to the wealth of available satel-
lite observations [see, e.g., Allen et al., 2007; Mattern et al.,
2010]. To obtain an overview of the uncertainty in surface
chlorophyll, we computed its time-averaged 3 month quan-

tiles at the station (Figure 12). In comparison to the bottom
oxygen quantiles (Figure 6), it is evident that the same inputs
have a strong effect on both quantities, albeit in a different
order. The inputs that include freshwater river runoff (river,
disch) have a very pronounced impact on surface chloro-
phyll at the station, and the extra nutrient input of the river
compared to the disch input manifests itself in a slightly
more spread out distribution. As with bottom oxygen, sea-
sonal changes in the effect of the inputs are apparent, and
all of the inputs have a higher impact in the middle of the
year. The choice of SOC or IR model configuration has no
noticeable impact on the surface chlorophyll field at the sta-
tion and leads to negligible differences in the time-averaged
quantiles (compare Figure 12a and 12b).

[58] To get an idea of the spatial spread of uncertainty,
we obtained the mean and standard deviation of the sur-
face chlorophyll field on 17 July 2004 for two inputs: disch,
which has a strong effect on surface chlorophyll at the
station, and �0 with a weaker effect. Both inputs show simi-
lar patterns in the mean surface chlorophyll field (Figure 13).
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Figure 10. The distribution of the size of the hypoxic area on 17 July 2004 induced by uncertainty in
the inputs. Each bar corresponds to one uncertain input to the (a) SOC and (b) IR model configuration.
The outer (lighter) bars mark the size of the area that has a probability of hypoxia between at least 0.75
(lower limits of outer bars) and at least 0.25 (upper limits of outer bars). The inner (darker) bars mark the
[0.4, 0.6] probability interval, and the black lines correspond to the area with a probability that is at least
0.5, the maximum likelihood area. The blue vertical lines mark the size of the hypoxic area in the SOC
and IR baseline simulations without uncertainty. The entropy values corresponding to these probabilities
are marked in Figure 3. The time development of these properties for the SOC disch input are shown in
Figure 11.

Figure 11. Temporal development of the distribution of the size of the hypoxic area for uncertain disch
input for the SOC model configuration in comparison with estimates based on observations. The colored
regions in the plot correspond to the freshwater discharge to the SOC model configuration. The outer
region is the size of the area that has a probability of hypoxia between at least 0.75 (lower limit of outer
region) and at least 0.25 (upper limit of outer region). The inner corresponds to probability values of 0.6
and 0.4. The thick blue line corresponds to the area with a probability that is at least 0.5, the maximum
likelihood size of the hypoxic area. The dotted line shows the development of the size of the hypoxic
area in the baseline simulation without uncertainty. The large black bars correspond to estimates of the
hypoxic area based on observations from the Louisiana Universities Marine Consortium (LUMCON)
cruises which are performed annually in late July; the width of each bar marks the date range of the
corresponding cruise.

Surface chlorophyll is highest close to the Mississippi Delta
and the mouth of Atchafalaya Bay, in regions where the
nutrient input into the model is high. As expected, uncer-
tainty, described here by the standard deviation, is lower for
the �0 input. For the disch input, high values of the standard
deviation are found along the fringes of the high chlorophyll
areas, similar to the spread of entropy along the boundary of
the hypoxic area (Figure 9). Variations in the inputs appear
to affect the surface patch of high chlorophyll in a simi-
lar way they affect the hypoxic zone at the bottom: Spatial

offsets in large chlorophyll gradients have a similarly strong
effect on model uncertainty as offsets of the boundary of the
hypoxic area.

4. Discussion
[59] We performed a series of experiments to assess how

uncertainty in selected inputs of a physical-biological model
of the Texas-Louisiana shelf propagates into its output. This
uncertainty analysis was based on an emulator approach, the
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Figure 12. Three-monthly (time-averaged) quantiles of the surface chlorophyll distribution at the loca-
tion of the station marked in Figure 5 for 2004 (3 month periods are separated by background color;
JFM = “January, February, March”, etc.). Each bar marks the region between the 0.1 and 0.9 quantiles
(outer bar), the region between the 0.25 and 0.75 quantiles (inner bar), and the median (solid black line) for
one uncertain input, in one season in 2004. The blue solid line in the background marks the development
of surface chlorophyll in the baseline simulation without uncertainty; its seasonal averages are displayed
as horizontal green lines. In contrast to bottom oxygen (Figure 6), differences between the SOC and IR
configuration are not very pronounced.

Figure 13. Mean and standard deviation (sd) of surface chlorophyll due to uncertainty the disch and �0
input for the SOC configuration.
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polynomial chaos expansion, to approximate output distri-
butions based on prescribed input distributions. We selected
nine inputs from both the physical and biological compo-
nents of the model and used the same relative amount of
uncertainty for all inputs. We focused on uncertainty in
estimates of oxygen and bottom water hypoxia expressed
through the biological model component. The goals of this
study were to examine the effect of different inputs in
time and space and to compare their impacts. Two benthic
parametrizations, IR and SOC, were considered in the exam-
ination. While our experiments were performed using the
polynomial chaos expansion, we expect that similar results
can be obtained using other emulator approaches or sim-
pler random sampling-based Monte Carlo techniques, albeit
the latter typically require a higher computational effort in
the form of more model simulations to reach a similar level
of accuracy.

[60] In order to quantify the uncertainty in model esti-
mates of hypoxia, we used entropy, a simple function of
the probability of hypoxia (Figure 3a). In cases where we
are interested in finite numbers of events (here, there are
two events: the oxygen at a grid cell concentration can
either be below the hypoxic threshold or above), entropy is
the suitable way to quantify uncertainty [Shannon, 2001].
High entropy values that we encounter on many occasions
(Figures 7 or 9) indicate that model hypoxia estimates can
be highly uncertain.

[61] As we have shown in section 2.7.1, the emulator-
based uncertainty estimates themselves are not free of error.
While uncertainties in the biological inputs (river nutrient
load, phytoplankton maximum growth rate, nutrient initial,
and boundary conditions) are propagated into the output
reliably, there is a higher error when estimating the model
response to variations in the physical inputs (wind, fresh-
water discharge, and vertical mixing coefficients; Figure 4).
Lower emulation error can be achieved by adding more
terms to the polynomial chaos expansion; yet this requires
more quadrature points, i.e., more samples from the input
distribution, and comes at a much higher computational cost.
What is interesting in regard to the emulator error is that
it spatially correlates with the region of high model uncer-
tainty (compare Figure 4b and Figure 9). The cause of the
error is that the emulator does not sample the output on a
sufficiently dense grid to capture its variability. One reason
for this model behavior is that, in contrast to the biological
inputs, changes in the physical inputs can affect the stochas-
tic flow field, e.g., instabilities and eddies in the model,
leading to highly variable small scale changes. It is this high
sensitivity of the model to the physical inputs that leads to
the emulator error. For this reason, we hypothesize that the
high model uncertainty estimates are not caused by a sys-
tematic overestimation by the emulator, but rather that both
model uncertainty and emulator error are caused by the same
phenomenon, the highly variable model output due to per-
turbations in the circulation. Thus, the emulator estimate
is right at least qualitatively by assigning high uncertainty
values to the regions in question.

[62] The results of this study offer insights into the sen-
sitivity of the model and allow for an assessment of the
impact of the uncertain inputs at each point in time and
space of the model simulations. The most obvious result
is that two inputs, the nutrient boundary and initial con-

ditions, have very little influence on the simulated bottom
oxygen concentrations and the surface chlorophyll content,
while the model is considerably more sensitive to the other
inputs we investigated. Uncertainty in physical model inputs
had the strongest effect on both bottom oxygen and surface
chlorophyll. This includes freshwater river runoff, consis-
tent with other studies identifying rivers as large sources of
uncertainty in coastal regions [Blumberg and Georgas, 2008;
Cossarini et al., 2009]. While changes in the nutrient bound-
ary conditions had little effect, our model also has a high
sensitivity to the physical boundary conditions, as shown
in Fennel et al. [2013]. Variations in input to the biologi-
cal model, including the river nutrient load, had generally a
much smaller impact.

[63] Besides model sensitivity, this study provides some
insights into model uncertainty, due to errors in the inputs,
although we cannot provide a full assessment of model
uncertainty here, since the model responses to inputs were
observed individually and not all inputs were considered.
Most importantly, we deliberately chose the same relative
error for all inputs in order to better compare their effect,
instead of selecting a specific distribution for each input
which would reflect our actual knowledge of the input pro-
cesses. However, we can draw some important conclusions
with regard to model error from our results. Uncertainty in
the inputs typically has little effect on oxygen or chloro-
phyll outside the biologically very productive zone close to
the river mouths or outside the spring and summer months
(April through September). Within the region and period
of higher error, however, uncertainties due to just a sin-
gle input can be considerable. Estimates of hypoxia are
strongly influenced by all of the physical inputs we investi-
gated (Figure 9), as are size estimates of the hypoxic region
(Figure 10). Even if the input uncertainties are decreased
(in this study, we used a distribution with an standard devi-
ation of 20%), it is very likely that their combined impact
on bottom oxygen estimates should lead to high errors in
hypoxia estimates.

[64] In section 3.4, we contrasted hypoxic area estimates
based on observations with uncertainty estimates due to river
inflow. We have shown that the variations we introduced into
the river inflow can, in three out of four cases, explain the
discrepancy with the observations. Assuming that the error
in the observations is relatively small, the predicted uncer-
tainty cannot explain the discrepancy that occurs in 1 year.
Here, an adjustment of the river inflow in the model would
thus likely not lead to much improved fit to the observations,
and one has to turn to other sources of model uncertainty for
improvement.

5. Conclusions
[65] We analyzed the impact of uncertainty in nine phys-

ical and biological model inputs on hypoxia predictions
from a physical-biological model of the Texas-Louisiana
shelf in the northern Gulf of Mexico. For the purpose of
propagating uncertainty from model inputs to the outputs,
we used a model emulator, the polynomial chaos expan-
sion, which offers a straightforward approach to propagating
uncertainty. While the computational cost of an emulator-
based uncertainty analysis is significant, it offers the possi-
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bility of a thorough assessment of model sensitivity for a
select number of model inputs.

[66] We found that the impact of the different inputs var-
ied considerably: the physical inputs typically had a stronger
effect than the biological inputs, with variations in the river
freshwater discharge and the wind field having the strongest
impact on both concentrations of bottom oxygen and sur-
face chlorophyll. Two of the biological inputs we evaluated,
nutrient initial and boundary conditions, had a negligible
effect on the output we assessed. Strong effects were con-
strained to regions with high biological activity in both time
and space. The uncertainty introduced into the system is con-
siderable and especially affects estimates of hypoxia and the
hypoxic area. For example, hypoxic area estimates of the
model vary by more than 5000 km2 or by around 40% (prob-
ability of hypoxia between 0.4 and 0.6) due to 20% variation
in the river inflow.
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