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a b s t r a c t

How to represent nutrient fluxes resulting from organic matter remineralization in sediments should be
an important consideration when formulating a biogeochemical ocean model. Here representations
ranging from simple parameterizations to vertically resolved diagenetic models are compared against a
comprehensive, multi-year data set from a mesocosm eutrophication study. Observations of sediment–
water fluxes of nutrients and oxygen and measurements of the state of the overlying water column were
made over 2.5 years in nine mesocosms, six of which received geometrically increasing loads of inorganic
nutrients. These observations are used here to force and optimize two simple parameterizations of
sediment oxygen uptake, one representative two-layer diagenetic model and one representative multi-
layer diagenetic model. In cross-validation experiments the predictive ability of these different
representations is compared. The main results are that the optimized multi-layer model fits the
observations best and also proved to be the most parsimonious, while the two-layer model failed the
cross-validation indicating that it is prone to over-fitting and was less parsimonious even than one of the
simpler functional oxygen flux models. We recommend that sediment models that are candidates for
inclusion in a biogeochemical model be assessed through a process of optimization and cross-validation
as we have done here.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Remineralization of organic matter in marine sediments is a
key component of the global cycles of biogeochemically reactive
elements (Berner, 1980; Burdige, 2006). In estuarine and conti-
nental shelf systems the return of inorganic nutrients to the water
column that results from sediment remineralization is important
in maintaining primary production and the coincident uptake of
dissolved oxygen by sediments can contribute significantly to the
development of hypoxic conditions (Kemp et al., 1992; Peña et al.,
2010; Fennel et al., 2013). Sediments are important sites of deni-
trification (including sediments that underlie well-oxygenated bot-
tom waters), which affects the supply of bioavailable nitrogen locally
on timescales of months to years (Seitzinger and Giblin 1996) and the
global inventory of bioavailable nitrogen on geological timescales of
1000 s to millions of years (Fennel et al., 2005). Quantification of
sediment remineralization fluxes and their accurate representation in
biogeochemical models is thus of considerable interest.

Direct observation of sediment remineralization fluxes is diffi-
cult. Fluxes across the sediment–water interface can be measured
by chamber incubations at the sea floor, by column incubations in
ll rights reserved.

+1 902 494 3877.
the lab or with the help of eddy flux correlation techniques.
Profiles of solid and pore water constituents can be measured by
coring or with the help of microelectrodes. However, the direct
measurement of organic matter remineralization, which occurs
through various pathways ranging from aerobic remineralization
and denitrification to sulfate reduction, is not possible (Boudreau,
1997). Furthermore, organic matter remineralization is known to
be variable in space and time, especially in estuarine and shelf
systems, and depends in non-linear ways on a number of factors
such as the rate of organic matter deposition, temperature, bottom
water concentrations of nutrients and oxygen and bioturbation
(Burdige, 2011). Local, regional and global estimates of sediment
remineralization rates and of the resulting sediment–water fluxes
thus have to rely on a combination of measurements and numer-
ical models (Berner, 1980; Boudreau 1997, 2000).

Consideration of sediment remineralization in biogeochemical
models is especially important in regional models describing
estuarine and shelf systems and in global ocean models that are
used to simulate processes over geologic timescales; however,
sediment remineralization is not always represented realistically
(see review by Soetaert et al., 2000). Following Soetaert et al.
(2000) the numerical treatment of sediment remineralization in
biogeochemical models can be categorized as follows: (1) in the
simplest approach constant oxygen and nutrient fluxes are assigned
at the sediment–water interface or sediment fluxes are ignored
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altogether and instead deep water concentrations are assigned; (2)
sediment parameterizations predict sediment fluxes as a function of
nutrient and oxygen concentrations in overlying bottomwaters, but
do not represent the sediments with any time-dependent state
variables (e.g., Middelburg et al., 1996; Fennel et al., 2006; Hetland
and DiMarco, 2008); (3) depth-integrated diagenetic models repre-
sent the sediment in one or two layers, each layer typically
describing a distinct chemical environment (e.g., Emerson et al.,
1984; DiToro, 2001; Bohlen et al., 2012); and (4) depth-resolved
diagenetic models divide the sediment into many vertical layers with
the aim of resolving profiles of solid and pore water constituents
(e.g., Dhakar and Burdige, 1996; Soetaert, 1996a,1996b; Kelly-
Gerreyn et al., 1999; Katsev et al., 2007; Dale et al., 2011). Only
the latter two types, the depth-integrated and depth-resolved
diagenetic models, store concentrations of solid and dissolved
sediment constituents as state variables and are able to account
for the effects of environmental history on remineralization. Diag-
enesis is defined as “the sum total of processes that bring about
changes in a sediment or sedimentary rock, subsequent to deposi-
tion” (Berner, 1980, p. 3). Diagenetic models thus describe transport
and reaction processes, which can be the result of biological or
physical phenomena (Boudreau, 1997).

Which of the above approaches is chosen to represent sedi-
ment remineralization in a biogeochemical model should be
motivated by the importance of benthic–pelagic coupling in the
system to be studied, although the computational effort has to be
considered as well; for instance, sediments in estuarine and
continental shelf systems are known to account for a large fraction
of total system respiration (Kemp et al. 1992) and can act as an
important sink for bioavailable nitrogen through denitrification
(Seitzinger et al., 2006; Rao et al., 2007), which can greatly affect
primary production and even air-sea fluxes of CO2 (Fennel et al.,
2008). Thus the use of constant sediment–water fluxes or constant
bottom water concentrations (category 1 from above) should be
ruled out for these systems. In systems where bottom waters are
well oxygenated and bottom water conditions are stable, simple
parameterizations (category 2) may be appropriate for describing
sediment–water exchange fluxes, while systems with variable
conditions, especially those prone to hypoxic and anoxic bottom
waters (see, e.g., Katsev et al., 2007), may require diagenetic
models (categories 3 and 4). In 3-dimensional models the desired
realism in representing processes underlying sediment reminer-
alization has to be balanced by computational feasibility. Diage-
netic models are computationally much more costly than the
simpler parameterizations, which is one of the reasons they are
seldom used in 3-dimensional biogeochemical models. Further-
more, layered diagenetic models are much more computationally
demanding than vertically integrated diagenetic models.

The overarching objective of this study is to aid in the decision
making process of how sediment remineralization should be
represented during implementation of biogeochemical models.
This study presents an assessment of the predictive abilities of a
range of sediment formulations (representing categories 2 to
4 from above) against a comprehensive set of sediment–water
flux measurements. More specifically, two simple parameteriza-
tions of sediment oxygen uptake representing category 2 (Hetland
and DiMarco, 2008; Murrell and Lehrter, 2011) and two represen-
tative examples of diagenetic models, the two-layer model by
DiToro (2001) representing category 3 and the multi-layer model
by Soetaert (1996a,1996b) representing category 4, are compared
against the same observational data set. The data set was obtained
as part of an eutrophication experiment carried out at the
Mesocosm Experimental Research Laboratory (MERL) at the Uni-
versity of Rhode Island, USA, over a period of 2.5 years (Nixon
et al., 1984; Oviatt et al., 1986). Observation types used here
include sediment–water fluxes of nitrate, ammonium, phosphate
and oxygen and concentrations of the same species and tempera-
ture in the overlying water.

First, depositional fluxes of organic matter had to be parame-
terized since these were not observed directly. Four different
parameterizations, one with constant fluxes and three dependent
on overlying biomass concentrations, were formulated, optimized
and compared. The parameterization that resulted in the best fit
between model and observations was then used for the remainder
of the experiments.

Second, model parameters were optimized by fitting the
models to the observations. This was a necessary step because
complex models depend on a number of parameters, many of
which are difficult or impossible to measure directly. Formal
optimization removes biases that could result from subjective
model tuning and is key for meaningful model comparisons
(Friedrichs et al., 2007). During the optimization process, which
is analogous to non-linear least squares regression, the model
parameters are systematically varied in order to minimize the
misfit between model output and corresponding observations
(Berg et al., 1998; Friedrichs et al., 2007; Bagniewski et al., 2011).

Finally, a cross-validation analysis was carried out in order to
determine if any of the models are over-fitting the observations.
Over-fitting is an undesirable feature that can occur when a model
contains too many free parameters. On the one hand a model with
many free parameters (or degrees of freedom) might easily be
adapted to a particular observation set, but at the risk of fitting
parameters to meaningless variation (noise) in the observations.
Over-fitting thus may decrease the model's ability to predict an
independent set of observations. On the other hand, a model with
too few free parameters, although not as prone to over-fitting, may
not be able to represent the dynamics of the system and thus
could generate a poor fit. The objective is therefore to find the
most parsimonious model. The results of the cross-validation will
be discussed.
2. Materials and methods

2.1. Notation

The notation adopted in this text is as follows: J represents
fluxes across the sediment–water interface with positive values
indicating fluxes out of the sediment; r is a specific rate constant;
R is a reaction rate; Rn is a vertically integrated reaction rate; and k
is used to represent half saturation constants.

2.2. Dataset

Observations from a mesocosm eutrophication experiment,
conducted between 1981 and 1983 at MERL to study the effects
of nutrient loading on coastal ecology and sediment biogeochem-
istry (Nixon et al., 1984; Oviatt et al., 1986), are used as model
inputs and for model optimization and evaluation. Full details of
the experiment including the resulting observations are available
in Frithsen et al. (1985a, 1985b, 1985c). Only the key features are
repeated briefly here.

Six of the nine mesocosms were subjected to a wide range of
nutrient loads (ammonium, phosphate and silicate were added
weekly in the stoichiometric ratio 12.8 N: 1.0 P: 0.91 Si); the
remaining three were used as controls (referred to as C1, C5 and
C8). The first of the six mesocosms (referred to as 1� ) received
7.57 mmol N/day, and each one thereafter (referred to as 2� , 4� ,
8� , 16� , 32� ) received double the nutrient load of the preced-
ing mesocosm so that the magnitude of nutrient inputs increased
geometrically between mesocosms. The stoichiometry of the
nutrient additions resembles that of sewage and the nutrient
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concentrations in the 32� mesocosm resembles those of the
heavily eutrophied New York Harbor.

The cylindrical mesocosms (7 m deep, 1.5 m in diameter, open
at the top) were engineered to mimic conditions in the adjacent
Narragansett Bay. Each mesocosm contained sediment (40 cm in
depth) that was transplanted from the bay. Mesocosm tempera-
tures were equilibrated by heat exchangers with adjacent bay
water, and bay water was pumped through the tanks at a turnover
rate close to that of the bay (∼27 days). Tidal mixing was simulated
with an automatic stirrer on a 6-h schedule with mixing rates
chosen to match the concentration of resuspended sediment in the
mesocosm with that of the bay (∼3 mg/L).

Throughout the experiment, monthly measurements of water
properties (O2, NO3, NH4, PO4, temperature, chlorophyll and
zooplankton biomass) were taken and benthic chambers were
used to measure the exchange fluxes of O2, NO3, NH4, and PO4

between the sediments and the overlying water column. The
evolution of temperature and of O2, NO3, NH4, and PO4 concentra-
tions is shown in Figs. 1 and 2.
2.3. Reaction rate estimates

Since direct measurements of benthic reaction rates are not
available from this experiment, rates of carbon remineralization,
denitrification, and nitrification were estimated assuming that
fluxes of oxygen, ammonium and nitrate are in steady state as
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Fig. 1. Water temperature in control mesocosm C01. The temperature in the other
mesocosms is virtually identical.
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Fig. 2. Concentration of dissolved oxygen, ammonium, nitrate and phosp
in Fennel et al. (2009). The three known fluxes between sedi-
ment and overlying water column are the oxygen flux JO2

(μmol O2=cm2d), the ammonium flux JNH4
(μmol N=cm2d) and

the nitrate flux JNO3
ðμmol N=cm2dÞ. The four unknown, vertically

integrated reaction rates are the total rate of carbon remineraliza-
tion Rn

met ðμmol C=cm2dÞ, the rate of carbon remineralization via
denitrification Rn

dnf ðμmol C=cm2dÞ, the rate of carbon reminerali-
zation via the sum of all other forms of remineralization Rn

aer
ðμmol C=cm2dÞand the rate of nitrification Rn

nit ðμmol O2=cm2dÞ.
Assuming that the composition of organic matter follows Redfield
stoichiometry (106C:16N:1P), the following equilibrium relation-
ships result:

Rn

met ¼ Rn

aer þ Rn

dnf

JO2
¼−

1 mol O2

1 mol C
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n

nit

JNH4
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2 mol O2

Rn

nit

JNO3
¼ 1 mol N
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nit−
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Rn

dnf :

The rate Rn

aer represents the oxygen sink due to aerobic
respiration as well as the reoxidation of reduced species (H2S,
CH4, etc.) that were produced by sulphate reduction, methane
production, or metal oxide reductions. Given the four equations
above and the three known fluxes, the four unknown rates were
solved for as follows:

Rn

met ¼ − 212
mol C
mol O2

JO2
−159

mol C
mol N
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þ 265

mol C
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JNO3
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dnf ¼ − 40
mol C
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The resulting reaction rates are later compared to the corre-
sponding rates simulated by the diagenetic models (see discussion
in Section 4.2 below and Figs. 6, 5 and 11).
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Fig. 3. Spatial representation of the two- and multi-layer models. Red dots represent typical oxygen concentrations for each layer; red lines indicate implied oxygen profiles.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
State variables of the two-layer model.

State variable Description Units

Ci Solid-volume concentration of organic carbon of lability class i ði¼ 1 : very labile; i¼ 2 : labile, i¼ 3 : inert) μmol C
Ls

NH3 Concentration of total inorganic ammonia (dissolved and solid phases) μmol NH3
L

NO3 Concentration of total dissolved inorganic nitrate and nitrite μmol NO3
L

PO4 Concentration of total dissolved inorganic phosphate (dissolved and solid phases) μmol PO4
L

H2S Concentration of total hydrogen sulfide (dissolved gas and solid phases) μmol H2S
L

CH4 Concentration of total methane (dissolved gas and solid phases) μmol CH4
L

bnthstr Biological stress index. A time-dependent, oxygen-sensitive parameter responsible for adjusting bioturbation rates in suboxic environments –
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2.4. Simple oxygen flux parameterizations

Two empirical oxygen flux parameterizations were assessed.
These parameterizations use only one or two parameters (p1 and
p2) and require only one or two variables as input. The first
parameterization (referred to as ML11) was suggested by Murrell
and Lehrter (2011) and assumes that oxygen flux into the sediment
JO2 ;ML increases linearly with oxygen concentration in the over-
lying water, i.e.

JO2 ;ML ¼ −p1½O2�

The second parameterization (referred to as HD08) was used in
Hetland and DiMarco (2008) and uses overlying water oxygen
concentration and temperature as inputs. This parameterization
assumes that oxygen uptake by the sediment JO2 ;HD is proportional
to overlying oxygen concentrations only at low concentrations and
that metabolic rates and hence oxygen uptake accelerate with
increasing temperatures according to

JO2 ;HD ¼ −p12
T
10 1−exp −

½O2�
p2

� �� �
here T represents temperature in 1C. Temperature dependence
(i.e. the factor 2T=10) follows the “Q10” rule such that an increase by
101 roughly doubles rates of reaction.

2.5. Two-layer diagenetic model

The two-layer diagenetic model (DiToro, 2001) simulates three
carbon remineralization reactions (sulphate reduction, denitrification,
and methane production), three oxidation reactions of pore water
solutes (nitrification, sulfide oxidation and methane oxidation) and
diffusive and bioturbative transports between the two vertical layers (a
thin aerobic layer on the surface and a thicker anaerobic layer below).
These two layers provide a coarse resolution for the depth profiles of
solid and dissolved chemical species (Fig. 3) and differ in their
biochemical representations in terms of processes and process rates.
Aerobic remineralization is not explicitly represented in this model,
but oxygen uptake by the sediment results from the three oxidation
reactions mentioned above. Since organic matter respiration in coastal
sediments is known to be dominated by anaerobic respiration (e.g.
Burdige, 2006) this is not an unreasonable assumption. The model
does not include dissimilatory nitrate reduction to ammonium or
anammox. The model state variables are listed in Table 1.
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The model represents carbon respiration with a specific rate
constant rmet;l and temperature adjustment factor θlfor each of the
three carbon lability classes ½C�l where l¼1,…,3. The combined
respiration rate is

Rmet ¼ ∑
l
rmet;lθ

T−20
l ½C�l

The temperature adjustment factors increase the reaction rate
by slightly over a factor of 2 for every 10 1C increase. Reminer-
alized ammonium and phosphate are released when carbon is
consumed according to Redfield stoichiometry.

Denitrification rates are calculated separately in each layer,
independent of the carbon respiration Rmet. Two denitrification
rates, Rdnf ;i (μmol NO3=cm3d), with i¼1, 2 for the aerobic and
anaerobic layers, are calculated as

Rdnf ;i ¼ rdnf ;iθ
T−20
dnf ½NO3�i

where rdnf ;i are rate parameters (1/d) and θT−20dnf is a dimensionless
temperature adjustment factor.

The model assumes that carbon remineralization Rmet is larger
than the carbon-based denitrification rate at all times and that
leftover carbon remineralization occurs either by sulphate reduc-
tion or methane production. Sulphate reduction is energetically
more favorable, and usually sufficient sulphate is present to
support it. The model calculates sulphate availability from the
salinity of the overlying water column, and in the rare situation
that this supply is insufficient, all remaining carbon consumption
leads to methane production.

Nitrification only takes place in the aerobic model layer
according to the equation

Rnit ¼ rnitθ
T−20
nit

½NH4�1
knit;NH4

θT−20k;nit;NH4
þ ½NH4�1

½O2�1
knit;O2

þ O2

where Rnit is the nitrification rate ðμmol N=cm3dÞ, rnit is the rate
constant (1/d), ½NH4�1 is the aerobic layer's ammonium concentra-
tion ðμmol N=cm3Þ, knit;O2

and knit;NH4
are Michaelis–Menten para-

meters for oxygen and ammonium respectively (μmol=cm3), and
θT−20nit and θT−20k;nit;NH4

temperature-dependence factors.
Hydrogen sulfide oxidation is governed by the equations

RH2S ¼ rH2S θ
T−20
H2S

½O2�1
KH2Sox;O2

H2S½ �

and

RS ¼ rS θT−20H2S
½O2�1

KH2Sox;O2

S½ �

where RH2S and RS are the sulfide oxidation rates for aqueous
and solid phases, respectively, (units μmol O2=cm3d), rH2S and
rS govern the reaction rate (units μmol O2=d cm3), H2S½ � and ½S�
are the concentrations of aqueous hydrogen sulfide and solid
Table 2
State variables of the multi-layer model.

State
variable

Description

C Solid-volume concentration of organic carbon of lability class i ði¼ 1 : in

O2 Porewater concentration of dissolved oxygen

NH3 Porewater concentration of dissolved inorganic ammonia

NO3 Porewater concentration of dissolved inorganic nitrate and nitrite

ODU Oxygen demand units, a placeholder for one or more reduced end-produ
Transported as an aqueous phase within the porewater

PO4pw Porewater concentration of dissolved inorganic phosphate

PO4s Solid-volume concentration of inorganic phosphate precipitate
metal sulfides (units μmol S=cm3), KH2S;O2 is a scaling factor
(μmol O2=cm3), and θT−20H2S is a temperature adjustment factor.

Methane oxidation rates, RCH4 ;ox (units μmol C=cm3d) are found
using

RCH4 ;ox ¼ rCH4 ;oxθ
T−20
CH4 ;ox

½O2�1
kCH4 ;ox þ ½O2�1

CH4½ �

where rCH4 ;ox is the specific rate constant, θT−20CH4 ;ox is a temperature
adjustment factor and kCH4 ;ox is a Michaelis–Menten parameter.

Some model state variable concentrations (most notably PO4)
exist in two phases, aqueous and solid, which are diffusively
transported according to different parameters. In each layer the
concentrations of both phases are redistributed every time step to
ensure equilibrium according to Πi ¼ Ci;s=Ci;aq where Ci;s and
Ci;aq are the concentrations of the solid and aqueous phases of
chemical species i. In the case of PO4 the partitioning para-
meter ΠPO4 is sensitive to oxygen according to
ΠPO4 ¼ π1π

ð½O2 �= O2½ �critÞ
2 when½O2� 4 ½O2�crit and

ΠPO4 ¼ π1 when ½O2�≤ ½O2�crit The two-layer model assumes that
oxygen concentrations achieve steady state at every time step and
iteratively solves for the steady state oxygen demand and concen-
trations. All of the sediment source and sink terms are calculated
during this iterative process. For more details see DiToro (2001) and
Wilson (2011).

2.6. Multi-layer diagenetic model

The multi-layer diagenetic model of Soetaert (1996a,1996b)
divides the sediment into multiple layers in order to explicitly
resolve the depth profiles of chemical species (Fig. 3). The original
model includes organic carbon, O2, NO3, NH4, and ODU (oxygen
demand units, i.e. any highly reduced chemical such as H2S) as
state variables, but was modified for this study to also include
solid and aqueous phases of PO4. The model calculates rates of
carbon metabolism (aerobic, denitrification and anaerobic), pore-
water oxidation (nitrification and oxidation of ODUs), and diffusive
and bioturbative fluxes. Similar to the two-layer model, dissim-
ilatory nitrate reduction and anammox are not included. The time-
and space-dependent concentrations of all model state variables
(listed in Table 2) are described by differential equations that are
solved by finite differences approximations. Thus, model concen-
trations are not necessarily in equilibrium at all times.

Organic carbon is represented by two lability classes, one more
and one less reactive, and is respired with a decay rate of

Rmet ¼∑
l
rmet;l½C�lθT−20met;l

where rmet;l is the maximum rate constant for carbon lability class l
and θmet;l is a temperature adjustment factor.

Similar to the two-layer model the total carbon consumption
rate is calculated for each layer and partitioned between three
Units

ert; i¼ 2 : labile) μmol C
Ls

μmol O2
Lpw

μmol NH3
Lpw

μmol NO3
Lpw

cts of an anaerobic Ćmetabolism (i.e. H2S, CH4, metal sulfides etc.). μmol O2
Lpw

μmol PO4
Lpw

μmol PO4
Ls
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remineralization pathways (aerobic, denitrification and other
anaerobic) according to the availability of reactants by calculating
limitation terms for each metabolism as

limaer ¼
½O2�

½O2� þ kaer;O2

;

limdnf ¼
½NO3�

½NO3� þ kdnf ;NO3

kdnf ;O2

½O2� þ kdnf ;O2

;

limanox ¼
kanox;NO3

½NO3� þ kanox;NO3

kanox;O2

½O2� þ kanox;O2

and

∑lim¼ limaer þ limdnf þ limanox

where kaer;O2 , kdnf ;O2
, kdnf ;NO3

, kanox;NO3 , and kanox;O2 are Michaelis–
Menten parameters. The model assigns the fractions of decomposed
carbon, Rmetðlimaer=∑limÞ, Rmetðlimdnf=∑limÞ and Rmetðlimanox=∑limÞ
to aerobic remineralization, denitrification and other anaerobic
remineralization, respectively.

Pore water oxidization reactions are controlled with a maximum
rate constant and a Michaelis-Menten parameter. For nitrification

Rnit ¼ rnit NH4½ � ½O2�
½O2� þ kO2;nit

;

where rnit is the maximum nitrification rate and kO2;nit
the half-

saturation constant. Oxidation of ODU is handled the same way as

RODUox ¼ rODUox ODU½ � ½O2�
½O2� þ kODUoxO2

The multi-layer model was modified to additionally represent
the dynamics of PO4. When organic matter is remineralized, PO4 is
released according to the Redfield ratio. As in the two-layer model,
PO4 is represented in solid and aqueous forms, and re-equilibrated
every time step to satisfy ΠPO4 ¼ PO4s=PO4aq where PO4s and PO4aq

are the concentrations of solid and aqueous phosphate, and ΠPO4 is
the equilibrium constant. This constant is sensitive to oxygen and
evaluated every time step using three parameters, π1, π2 and
½O2�crit as

ΠPO4 ¼ π1π
ð½O2 �=½O2 �critÞ
2 when½O2� 4 ½O2�crit

and

ΠPO4 ¼ π1 when½O2� ≤ ½O2�crit:
2.7. POM flux parameterizations

During the eutrophication experiment no observations of the
depositional flux of particulate organic matter (POM flux) were
made. Since the depositional flux is a necessary input for both
layered models it was parameterized. Four parameterization
methods were tested:
�

Tab
We

D

JO
JN
JP
Method A follows DiToro (2001) in assigning a constant
POM flux to each mesocosm over the entire 2.5 year
le 3
ights and uncertainties used for cost calculation according to mesocosm and datatype. U

atatype (d) Sd r2C01;d r2C05;d r2C08;d r201X;d

2
53. 0.053 0.065 0.053 0.221

O3
30. 0.036 0.036 0.036 0.028

O4
107. 0.009 0.009 0.010 0.012
simulation, i.e.

JPOM ¼ const:
�
 In method B the POM deposition scales in direct proportion to
chlorophyll concentrations in the overlying water, i.e.,

JPOM ¼ pchla½Chl�;
where pchla is a constant.
�
 In method C the POM flux varies linearly with the chlorophyll
of diatoms and other phytoplankton, approximating the rela-
tive fractions from algal abundance counts as

JPOM ¼ pdiaAdia þ potherðAtot−AdiaÞ
Atot

;

where Adia is the diatomaceous algal count, and Atot the total
algal count and pdia and pother are constants.
�
 In method D the POM flux was constructed from a linear
combination of chlorophyll-a and zooplankton biomass as

JPOM ¼ pchl½Chl� þ pzoo½zoo�;
where again pchl and pzoo are constants.

The constants in these parameterizations were determined by
nonlinear optimization as described below.

2.8. Optimization methods and experiments

The misfit between models and observations was quantified
with a cost function,

Fðp,Þ ¼ ∑
M

m ¼ 1

1
D

∑
D

d ¼ 1

1
Sd

∑
Im

i ¼ 1

ðXmod
m;d;iðp

,Þ−Xobs
m;d;iÞ2

s2m;d

;

where Xobs
m;d;i are the available observations ði¼ 1;…ImÞ for meso-

cosm m and observation type d, Xmod
m;d;iðp,Þ are the corresponding

model outputs which depend on the input parameter set p,, M ¼ 9
is the number of mesocosms, D¼ 4 is the number of different data
types d ϵ fJO2

; JNO3
; JNH4

; JPO4
g, Im is the number of observations for

each data type and mesocosm, Sd is a weight for each data type
and s2m;d is the uncertainty of a given observation. The weights Sd
can be thought of as normalization between data types (account-
ing for different units and magnitudes of fluxes) and were chosen
so that each data type contributes equally to the cost function
value of the baseline simulation of the two-layer model. Inclusion
of the uncertainties s2m;d guarantees that uncertain observations
contribute less to the cost function than more precise observa-
tions. This ensures, for example, that the highly uncertain nitrate,
ammonium and phosphate fluxes in the most eutrophic meso-
cosms (16� and 32� ) are not overrepresented. The weights and
uncertainties are given in Table 3.

The cost function Fðp,Þ can be algorithmically minimized with
respect to the parameter set p

,
(also referred to as optimization)

using a number of different techniques. The parameter set that
represents the minimum of the cost function (i.e. results in the
smallest misfit between observations and model) is referred to as
the optimal parameter set. The cost function value of the optimal
parameters is a useful diagnostic for comparing the different
ncertainties are from Kelly et al. (1985).

r202X;d r204X;d r208X;d r216X;d r232X;d

0.054 0.122 0.218 1.097 1.116
0.072 0.120 1.164 2.328 3.377
0.010 0.009 0.125 0.086 0.058
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Fig. 4. Mean depositional flux predicted by optimized parameterization A and by
jointly (a) and individually (b) optimized methods B, C and D.
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models. The uncertainty in the optimal cost function value due to
observational errors was estimated with the help of a Monte Carlo
analysis as in Bagniewski et al. (2011). For this purpose the
observations were perturbed by adding random noise to each data
point drawn from normal distributions with a mean of zero and a
standard deviation equal to the standard error of the correspond-
ing observation. 1000 such randomly perturbed data sets were
created, the corresponding cost function values computed and the
resulting standard deviations calculated. These standard devia-
tions are reported along with the optimal cost function values.
Baseline parameter values (i.e. the initial guess for optimization)
for the two- and multi-layer models were taken from their original
publications (Soetaert et al., 1996b; DiToro, 2001).

In all optimizations time-dependent model simulations were
performed repeatedly for each mesocosm over the 2.5-year dura-
tion of the experiment. In these simulations each mesocosm was
initialized with the final state of a multi-year simulation for
control mesocosm C1 in order to ensure that a dynamic steady
state had established.

First, the depositional flux parameterizations (methods A
through D) were optimized using a gradient descent algorithm.
All methods (A–D) were optimized for the two-layer model. For
methods B, C and D two sets of optimizations were performed, one
where the same parameters were applied across all mesocosms
(referred to as joint optimizations) and one where each mesocosm
had its own parameter set (referred to as individual optimiza-
tions). Note that method A assumes a different constant for each
mesocosm and thus should be considered an individual optimiza-
tion. As will be described below, methods C and D performed
poorly and thus were not used further. Then the depositional flux
parameterizations A and B were optimized (the latter individually
and jointly) for the multi-layer model using an evolutionary
algorithm (Mattern, 2008; Wood et al., in review). The best
depositional flux parameterization was chosen and used in the
remaining optimization experiments for the two-layer and multi-
layer models.

In preparation for optimization of the model parameters, the
curvature of the cost function with respect to changes in para-
meter values was analyzed surrounding the baseline parameter set
and the ten most sensitive model parameters were determined.
These 10 model parameters along with the nine POM flux input
parameters were then optimized to fit the model-predicted sedi-
ment fluxes to observed oxygen, ammonium, nitrate and phos-
phate fluxes. These optimizations used the genetic algorithm for
both, the two-layer and the multi-layer model. In addition the two
simple oxygen flux parameterizations were optimized using a
standard nonlinear least squares routine.
Table 4
Parameter values for optimized depositional flux parameterizations A, B, C and D
(A was optimized individually, the other three jointly). Unit of pconst is μmol C=cm2 yr.
Unit of pchla, pdia and pother is ðμmol C=cm2yrÞ � ðL=μg ChlaÞ. Unit of pzoo is
ðμmolC=cm2yrÞ � ðL=μgZooplÞ.

Method A B C D

Parameter pconst pchla pdia pother pdia pzoo

Joint – 3.38 2.408 0.251 2.53 0.23
C01 862.1 11.23 11.50 5.45 −0.19 0.65
C05 876.7 10.39 12.36 4.53 −0.18 0.64
C08 1014.2 11.57 11.54 4.47 0.16 1.51
01� 1783.4 8.43 10.91 4.51 0.12 2.12
02� 1192.5 4.74 4.79 −4.07 1.28 0.30
04� 1703.1 3.31 7.33 4.09 2.24 0.14
08� 2429.8 6.71 2.13 4.35 0.84 1.80
16� 2462.2 2.56 1.66 3.54 1.07 0.26
32� 2667.0 1.88 8.20 2.64 0.93 1.18
3. Results

3.1. Depositional flux optimizations

The depositional flux of particulate organic matter was para-
meterized according to four different methods that are defined in
Section 2.7 and were optimized for the two-layer model as
described in Section 2.8. Parameterizing the POM flux as a
constant (method A) resulted in a minimum cost of 0.9407
0.036, which is the smallest misfit achieved by any parameteriza-
tion. The other three parameterizations (B, C and D) estimate POM
fluxes using a qualitatively different approach, scaling the POM
flux by water column biomass observations. The minimum costs
for the joint optimizations of methods B, C and D are 1.7170.053,
1.5170.047 and 1.5170.047, respectively. The minimum costs for
the individual optimizations of methods B, C and D are 1.137
0.041, 1.1070.040 and 1.3770.045, respectively. As expected, the
jointly optimized parameterizations produced larger costs
than the individual optimizations, which have more free
parameters and thus more degrees of freedom that can be utilized
in the optimization process. The resulting overall mean POM
fluxes are shown in Fig. 4 and their parameter values are listed
in Table 4.

When comparing the optimal depositional fluxes for the different
parameterization methods it appears that some methods are more
sensitive to nutrient load than others. According to method A
depositional fluxes vary by less than a factor of 2 between the least
eutrophic 1x and the most eutrophic 32� mesocosms (Fig. 4),
which seems unrealistic given that the latter receives 32 times more
nutrients. Jointly optimized flux parameterizations B, C, and D
showed a stronger sensitivity with depositional fluxes in the 32�
mesocosm being 8-fold larger than in 1� . This is a direct conse-
quence of the increase in water column biomass along the eutro-
phication gradient; biomass is 8-fold larger in the 32� mesocosm
compared to the controls. However, when these same parameter-
izations were individually optimized, their sensitivity to eutrophica-
tion more closely matched that of method A with POM fluxes
varying by little over a factor of 2 between mesocosms.

Method A was always optimized individually, requiring a total
of nine parameters. Since jointly implemented methods B, C, and D
used only one or two parameters, it is possible that method A
leads to a smaller misfit between model and observations simply
because of over-fitting, and that the models with fewer para-
meters are actually to be preferred. More generally stated, the
objective of the parameterizations was not necessarily to produce



Table 5
Two-layer model f -tests comparing depositional flux parameterization A against
the simpler parameterizations Bjoint, Cjoint, and Djoint.

Compare method A against Bjoint Cjoint Djoint

f-score 974.01 838.61 838.52
Critical value 1.95 2.02 2.02

Fig. 5. Rate of carbon remineralization in the sediment plotted over temperature.
Rates were calculated as described in Section 2.3.

Fig. 6. Carbon remineralization rates of the baseline and optimized two-layer and multi-
Section 2.3). The simulated rates were integrated vertically (from sediment surface to 4
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the best fit, but to find the most parsimonious one. The relative
parsimony of method A against the other methods was tested with
the help of an f -test, which can check if additional parameters are
justified (Soetaert, 1996a,1996b; Berg et al., 1998). An f -value,
calculated from the cost values and numbers of parameters for
each parameterization pair, was compared against the critical
value of its f -distribution. An f -value that exceeds the critical
value indicates that the extra parameters are justified by the
improved fit. The results of the f -tests are shown in Table 5. For
all three pairs, the f -value was much larger than the correspond-
ing critical value, indicating that the extra parameters of method A
produced a statistically significant improvement in the model-
data fit.

It should be noted that optimization of the flux parameteriza-
tions did not always generate meaningful parameter values.
Individual optimizations of methods C and D sometimes resulted
in negative parameters implying a correlation between the pre-
sence of water column phytoplankton or zooplankton, and the
removal of organic matter from the sediments. This is clearly in
contradiction to the rationale of the parameterizations and illus-
trates that although individually optimized methods C and D
produced smaller cost functions than the joint parameterizations,
this was only a result of the optimizer exploiting the extra degrees
of freedom.

All the optimizations described so far were for the two-layer
model. In addition, the depositional flux parameterization A and
joint and individual parameterization B was optimized for the
multi-layer model. (Since methods C and D performed poorly in
the optimization of the two-layer model, it was not used further in
the multi-layer model.) Method A generated a cost of 0.7870.036,
layer models and reaction rate estimates based on the observations (as described in
0 cm depth).
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again smaller than the individually optimized method B, which
scored 0.8970.040. Jointly optimized method B performed worse,
scoring 0.9970.043.

Since method A yields the best model-data fits (smallest cost
function values) for both models and does not appear to overfit the
observations based on the f -tests it was used to generate depositional
fluxes for both sediment models for the remainder of this study.
3.2. Sediment model parameter optimizations

The two-layer and the multi-layer diagenetic models were
optimized as described in Section 2.8. The cost function was scaled
such that the initial cost for the two-layer model (i.e. the cost for
the baseline parameters set) is equal to 1. Optimal cost function
values smaller than 1 thus indicate a better fit than the two-layer
model with baseline parameters. The optimized parameters are
listed in Supplementary Tables A and B.

For its optimal parameter set the cost function value of the two-
layer model is 0.8670.039, which is significantly larger than the
corresponding cost function value of the multi-layer model of
0.7170.036. (We consider two cost function values to be significantly
different if they are outside of each other's uncertainty range.) The cost
contributions of the nitrate and phosphate fluxes are not significantly
different between both models with a nitrate flux contribution of
0.1570.03 and 0.1370.02 and a phosphate contribution of 0.237
0.02 and 0.2170.02 for the two-layer and multi-layer models,
respectively. However, the multi-layer model has a significantly
smaller cost contribution from the oxygen flux of 0.1770.008
compared to the two-layer model with 0.2370.009 and a slightly
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Fig. 7. Observed and simulated benthic oxygen fluxes. Simulated fluxes from baseline
smaller cost contribution from the ammonium flux of 0.2070.01
compared to the two layer model with 0.2470.02.

Since the sediment–water fluxes of oxygen and inorganic
nutrients are largely driven by remineralization of organic carbon
in the sediments, the simulated carbon remineralization rate is
shown for the baseline and optimized simulations in Fig. 5 along
with the observation-based estimates (see Section 2.3). Carbon
remineralization shows a pronounced seasonal cycle, the ampli-
tude of which increases along the eutrophication gradient. The
seasonal cycle appears to be driven by temperature as illustrated
in Fig. 6, where the observation-based estimates of carbon
remineralization are plotted over temperature. Despite constant
depositional fluxes of organic matter, the simulations reproduce
the seasonal cycle (carbon remineralization is temperature-
dependent in both models) and the increase in maximum fluxes
across the eutrophication gradient (changes in mean reminerali-
zation fluxes roughly scale with changes in depositional fluxes).
The only systematic difference between both models is that the
optimized multi-layer model consistently predicts smaller rates
than the two-layer model (except for brief periods in the 4� and
8� mesocosms).

Simulated and observed sediment–water fluxes of oxygen and
inorganic nutrients are shown in Figs. 7–10 for the baseline and
optimized simulations of both sediment models. The observed and
simulated oxygen fluxes (Fig. 7) are anti-correlated with the
carbon remineralization rates with largest sediment uptake of
oxygen occurring in summer. The simulated oxygen fluxes are
remarkably similar for both models, except for the 8� mesocosm,
where the multi-layer model agrees notably better with the
observations.
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Fig. 8. Sediment–water fluxes of ammonium from the baseline and optimized two-layer and multi-layer models and observations.
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The observed and simulated ammonium fluxes (Fig. 8) exhibit
the same seasonal variations as the carbon remineralization rates
and are generally directed out of the sediment. In winter, ammo-
nium uptake by the sediment is observed in the 8� , 16� and
32� mesocosms, although the uncertainties on these fluxes are
much larger for the latter two. While both optimized models
successfully capture the magnitude and seasonality of the
observed fluxes, only the multi-layer model reproduces the
negative fluxes in the most eutrophic mesocosms.

Observed phosphate fluxes (Fig. 9) generally follow the same
seasonal signal as carbon remineralization and in the less eutrophic
mesocosms both sediment models capture this behavior well.
In the 16� and 32� mesocosms, there appear to be some abrupt
changes in the observed fluxes that both optimized models repre-
sent differently.

Observed nitrate fluxes (Fig. 10) show the least distinctive
pattern with relatively constant fluxes out of the sediments in
the controls and 1� mesocosm and fluxes fluctuating around zero
in the more eutrophic mesocosms. Both models reproduced these
fluxes well as indicated by the relatively small cost contribution of
the nitrate fluxes to the overall cost (see above).

For completeness sake we show the simulated and observation-
based denitrification rates in Fig. 11. Both models tend to under-
estimate the amplitude of seasonal variations in the observation-
based estimates and underestimate the maxima in summer in the
controls and 1� to 4� mesocosms. In the 8� to 24� mesocosms
the rate estimates come with large uncertainties; given these both
models agree well with the observation-based estimates. One small
but systematic difference between both models, that is notable in
the controls and the 1� to 4� mesocosms, is that the multi-layer
model represents the shape of the annual cycle correctly with
largest denitrification fluxes in the summer, while the two-layer
model is predicting the largest fluxes in winter. However, the
magnitude of this signal is small.

3.3. Oxygen flux parameterizations

Two simple oxygen flux parameterizations were fit to the
observations: ML11 which simply assumes a linear dependence
of sediment oxygen uptake on oxygen concentrations in overlying
water, and HD08, which assumes a saturating response of sedi-
ment oxygen uptake and a temperature dependence. The resulting
oxygen fluxes are shown in Fig. 7 along with the model-simulated
and observed fluxes.

The oxygen cost contributions for the parameterizations are
0.6270.01 for ML11 and 0.2270.01 for HD08. The misfit of the
HD08 parameterization is larger than the multi-layer model
(0.1770.008), but similar to the two-layer model (0.2370.009).
However, the misfit of the ML11 parameterization is large. As can
be seen in Fig. 7, the seasonal cycle of oxygen fluxes predicted by
this parameterization is out of phase with that in the observations.

The reason why ML11 is ill suited for the MERL system is that
its oxygen concentrations are typically well above 100 mmol
O2 m−3 and thus in the range where one would not expect oxygen
limitation of the sediment oxygen consumption rate. Furthermore,
sediment oxygen uptake rates in the mesocosms are smallest
when oxygen concentrations are highest (Fig. 12), which is a direct
consequence of the seasonal variations described above (in sum-
mer carbon remineralization rates are highest while oxygen
solubility and thus dissolved oxygen concentrations are lowest).

The HD08 parameterization produces a much better fit simply
because of its temperature dependence. The parameter controlling
the oxygen dependence is inconsequential and essentially uncon-
strained by the observations (Fig. 12).
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Fig. 9. Like Fig. 8 but for phosphate flux.
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3.4. Cross-validation

Cross-validation, an important step in model optimization,
aims to asses how generally applicable an optimized model is
and to ensure that the reduction in misfit between model and
observations is not a result of over-fitting to meaningless variation.
Ideally, optimizing a model to one set of observations will improve
its predictive power such that when applied to a new, indepen-
dent set of observations the model predictions are improved
(when compared to the unoptimized model), or at least that the
optimization had no negative effect.

In the cross-validation experiments carried out here, both
sediment models were fit to a randomly chosen subset of five
mesocosms. Then the resulting parameter set was used within all
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mesocosms and the resulting cost function value calculated. Ten
such optimizations were performed and the resulting cost func-
tion values were averaged. The multi-layer model generated the
smaller average total cost of 0.7270.03, while the two-layer
model averaged at 1.3270.04, suggesting that the optimization
of the latter resulted in over-fitting.

A similar cross-validation experiment was performed for the
HD08 parameterization, resulting in an averaged oxygen flux cost
of 0.3170.01. In comparison, the cross-validation experiments for
the layered models generated oxygen flux cost contributions of
0.1870.01 for the multi-layer model and 0.3370.01 for the two-
layer model.
4. Discussion

4.1. Parameterizations of depositional flux

Deposition of organic matter to the sediments is one of the
major processes connecting water column and sediment biogeo-
chemistry. The deposition of organic matter through sinking is an
important input variable for the models optimized in this study
driving many if not all of the diagenetic processes represented.
Unfortunately, the depositional flux is difficult to observe directly
(no direct observations are available for the MERL system) and had
to be parameterized for this study.

Since the depositional flux of POM is ultimately derived from
biomass within the water column, it is reasonable to expect that the
former scales with the latter. Following this line of reasoning, we
formulated flux parameterizations that generate a depositional flux
in proportion to proxies of water column biomass, specifically,
chlorophyll a, diatom abundance and/or zooplankton concentrations
(methods B, C and D). These parameterizations are consistent with
the treatment of sinking in conventional water-column biological
models, which use similar linear or quadratic relationships, and with
observations that benthic microbial activity is stimulated immedi-
ately by the input of sinking phytoplankton during the spring bloom,
e.g., by Graf et al. (1982) in the Baltic Sea. By positing a linear
relationship between depositional flux and water-column biomass,
two outcomes were expected: first, since water column biomass
grows with the availability of inorganic nutrients, the largest
depositional fluxes should occur in the more eutrophic mesocosms;
second, seasonal variation in water-column productivity should
result in seasonal variations of the depositional flux.

As expected, when optimized jointly the parameterizations B, C
and D roughly scale with nutrient load across the eutrophication
gradient. An improved fit was achieved in individual optimizations
where these same methods assigned a different parameter set for
each mesocosm (i.e. when individually implemented); however,
the resulting depositional fluxes were far less sensitive to nutrient
loading. Method A assigned a constant depositional flux to each
mesocosm and generated a similar eutrophication-insensitive
result. Method A also resulted in the best fit overall. Thus the
parameterization that best fit the data was the least sensitive to
nutrient loading and exhibits no seasonal variation whatsoever.
While this was contrary to our expectation, other studies, e.g.
Laursen and Seitzinger (2002) when measuring benthic fluxes in
the shallow Mid-Atlantic Bight, have found no pronounced seaso-
nal variations either.

Neither of these divergences from expectation appears to be
the result of poorly tuned sediment model parameters (when we
included parameters in the optimization process, we found the
same result). It is also unlikely that the results are due to a
systematic bias in either of the models, because both the two-layer
model and the multi-layer model generated a similar result
(although the possibility that both models share the same bias
hasn't been eliminated).

It is worth noting that sediment was intentionally resuspended
in the mesocosms by movement of the integrated stirring plungers
(see Section 2.2), and that this removal process was not simulated
in either model. In effect the resuspension returns organic matter
to the water column where it may remineralize outside of the
sediment. If higher nutrient loads indeed induced larger deposi-
tional fluxes, this may have been counteracted by larger resuspen-
sion of easily erodible organic carbon from the sediment. Thus, for
a more eutrophic mesocosm, proportionally less carbon would
have been remineralized in the sediments.

4.2. Optimized model results

The multi-layer model produced smaller model-data misfits
than the two-layer model, possibly due to its higher spatial
resolution and fewer parameter redundancies. Another difference
between both models is that fluxes simulated by the multi-layer
model are not necessarily in steady state, while the two-layer
model solves for steady-state fluxes at each time step. However,
we tested how far the multi-layer model fluxes differ from their
steady-state fluxes and found the differences to be negligible.
Since the pattern of cost contribution by observation type and
mesocosm are similar for both sediment models, it is difficult to
identify a specific reason for why the multi-layer model did better.

There are reasons to expect that the models might behave
similarly as both simulate the same chemical processes (albeit
sometimes under different labels). The two-layer model simulates
the anaerobic sulphate metabolism, and the oxidation of H2S,
while the multi-layer model simulates an analogous anaerobic
metabolism, generating ODUs which can be oxidized in aerobic
layers. Only the multi-layer model explicitly describes an aerobic
metabolism, but this distinction should have little effect on the
simulated sediment-water fluxes as both add any outfluxes of
H2S=ODUs to their oxygen influx estimates. Since this conversion
consumes the same amount of oxygen per mole of decomposed
carbon, it effectively erases any stoichiometric distinction between
the aerobic and anaerobic remineralization pathways and directly
links the oxygen flux to the rate of carbon remineralization.

Similarities between both models' cost contributions may also
result from the stability of the oxygen concentrations in the
mesocosms. Had low oxygen conditions occurred, this would
likely have induced different non-linear responses in both models.
For instance, the two-layer model represents oxygen sensitivity in
denitrification rates by providing different denitrification para-
meters to the upper and lower layers. The multi-layer model,
rather than using different parameter values in different layers,
uses a universal parameterization to inhibit denitrification rates
when oxygen is present.

None of the multi-layer model's denitrification parameters
were included in the optimization, while two of the three two-
layer model parameters were included. Despite this disadvantage,
the multi-layer model's denitrification output was within error of
that of the two-layer model. Given its finer vertical resolution the
multi-layer model is better able to estimate the overlap between
oxygen and nitrogen distributions for denitrification rate calcula-
tions. The two-layer model is less effective in determining the
overlap between oxygen and nitrate since it resolves neither the
concentration nor distribution of oxygen and instead has to rely on
different rate parameters for the aerobic and anaerobic sediment
layers.

Denitrification is often classified based on the source of nitrate
as either “coupled” denitrification, which consumes nitrate that
was produced by nitrification in the sediments, and “direct” deni-
trification, which consumes nitrate that has diffused into the



Fig. 13. Estimated denitrification rates in MERL mesocosms (rates were estimated
as described in Section 2.3). Direct denitrification occurs only in the eutrophic
mesocosms.
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sediments from the overlying water. Since the treatment mesocosms
received a constant supply of inorganic nitrogen, it is reasonable to
expect more diffusion of nitrate into the sediments in the more
eutrophic mesocosms, resulting in more direct denitrification.
Observation-based estimates (Section 2.3) of coupled and direct
denitrification are given in Fig. 13 and show that direct denitrifica-
tion is only taking place in the three most eutrophic mesocosms,
accounting for only about 20% of their total denitrification. In order
for direct denitrification to take place in the models, nitrate needs to
diffuse into the sediment. Both models produce the necessary
influxes in the eutrophic mesocosms.

Interestingly, ammonium fluxes into the sediments were
observed during winter in the eutrophic mesocosms. Only the
multi-layer model was able to re-create a negative flux in the 16�
and 32� mesocosms. In this case ammonium concentrations were
greater in the overlying water column than in the sediment and
ammonium diffused into the sediment as a result.

The production of inorganic phosphate is directly coupled to
carbon remineralization. It is interesting, then, that the sediment
models show pronounced differences in their carbon remineraliza-
tion rates (Fig. 6), while the misfits of phosphate outfluxes are
within error of one another (Fig. 9). Since phosphate is never
consumed in the sediments, its chemical dynamics depends only
on carbon remineralization and the partitioning of phosphate
between the dissolved and solid phase. While both models have
the ability to simulate oxygen-sensitive sorbtion of PO4, only the
two-layer model exhibits examples of this behavior in the 16� and
32� mesocosms (see Fig. 9). Since the eutrophic mesocosms have
large uncertainties and contribute little to the cost function, the
latter difference in model behaviors is of low significance overall.

4.3. Oxygen flux parameterizations

As discussed earlier, complexity is not always a desirable model
characteristic, since over-fitting becomes a possibility and compu-
tational effort increases. Representing a simpler form of sediment
model, two oxygen flux parameterizations were fit to the observa-
tions using non-linear regression and their resulting output
compared to that of the layered models. The fit produced by these
simple parameterizations was inferior to that of the multi-layer
model, but not the two-layer model.

While there should obviously exist a relationship between
oxygen flux into the sediment and oxygen concentration in over-
lying water, such that the flux decreases as oxygen approaches
zero, the observations indicate an increase of sediment oxygen
uptake with decreasing oxygen concentrations (Fig. 12). Correla-
tion does not imply causation however, as this trend is the result of
seasonality in the two signals. High overlying oxygen concentra-
tions during winter and spring (driven by increased solubility and
the spring diatom bloom) coincide with relatively lower carbon
respiration rates and oxygen demand while the lowest overlying
oxygen concentrations coincide with high oxygen demand during
the summer. As a result, Murrell and Lehrter's (2011) parameter-
ization (ML11), which assumes a positive linear correlation,
produces oxygen fluxes that are out of phase with the observations
(Fig. 7). The Hetland and DiMarco (2008) parameterization
(HD08), which is dependent on temperature and oxygen, is much
more successful, albeit entirely due to its ability to vary fluxes with
temperature. The oxygen dependency contributed nothing to this
parameterization's predictions, as the optimization process com-
pletely eliminated its oxygen sensitivity (Fig. 12), effectively
reducing the HD08 parameterization to a single Arrhenius factor.

Interestingly, when considering the cost function error resulting
from observational uncertainty, the oxygen fluxes produced by the
HD08 parameterization are on par with the two-layer model, which
along with the multi-layer model all share a very similar
temperature-dependence in their calculation of carbon metabolism
rates. It is worth noting that while the HD08 model was fit only to
oxygen fluxes, the layered models were also fit to other observa-
tions, requiring some compromise of their oxygen fluxes for the sake
of fitting other outputs. Furthermore, the time-invariant POM flux
inputs may have nullified a significant advantage of the layered
models, as they no longer were able to exploit the full dynamics of
carbon storage, but instead accumulated and metabolized carbon
according to temperature trends only (it is even possible that the
temperature-dependence concealed the seasonality in depositional
fluxes discussed above in Section 4.1). That the simple HD08
parameterization can generate oxygen fluxes on par with the two-
layer model demonstrates that simple models can be valuable, given
the right conditions. This model also demonstrates the critical
importance of representing temperature sensitivity within the
sediments, as the temperature-dependence alone is able to explain
the majority of the variation within oxygen fluxes.

4.4. Cross-validation

Cross-validation is a way to assess a model's predictive cap-
ability by quantifying its ability to explain new observations
without any adjustment of its parameters. This was done by
optimizing the models in randomly chosen subsets of mesocosms
and then using the resulting parameter set to run the models in all
mesocosms. By comparing the average cost of different models
one can gauge which is best suited to general application.

At the outset of our study we expected two outcomes of the
cross-validation: (1) for all models, optimization leads to an
improvement in predictive skill for the system considered; and
(2) predictive skill of a model scales with its computational cost, in
other words, the multi-layer model should do best and the simple
parameterizations do worst. Our results are not consistent with
these expectations.

While the multi-layer model proved the most versatile by
maintaining the smallest average cost, the two-layer model did
not stay below its baseline cost value of 1.0, scoring an average
cost of 1.3270.05. This means that the un-optimized baseline
version of the two-layer model was more generally applicable than
the optimized version and indicates that the two-layer model is
prone to over-fitting. Even more telling is that the two-layer
model's oxygen flux results in a larger cost contribution than the
HD08 oxygen flux parameterization in the cross-validation.

It is difficult to identify which aspect specifically leads to its
apparent over-parameterization, but it is worth noting that the
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two-layer model parameterizes a number of phenomena that the
multi-layer model simulates more explicitly. For example, the two-
layer model produces an oxygen-sensitive rate of denitrification
simply by using different parameters for the aerobic and anaerobic
layers, while the multi-layer model uses the same parameteriza-
tion in all layers. In this respect the two-layer model is at a
disadvantage since it uses more parameters and is less able to
resolve the vertical distribution of oxygen.
5. Conclusions

In a quantitative comparison of different parameterizations of
organic matter deposition the parameterization that prescribes a
constant flux for each mesocosm performed better than any of the
time-varying, biomass-dependent parameterizations tested. Con-
trary to expectation, the optimal constant depositional fluxes
varied by less than a factor of 2 between the least eutrophic and
the most eutrophic mesocosm, despite the fact that the latter
received 32 times the nutrients of the former. Possibly higher
deposition of organic matter in the more eutrophic mesocosms
was partly counteracted by larger resuspension of freshly depos-
ited material.

The mesocosm observations show a pronounced temperature
dependence of sediment oxygen uptake (and by implication
organic matter remineralization) and an increase in sediment
oxygen uptake with decreasing oxygen concentration. Of the two
parameterizations of sediment oxygen uptake tested, the one that
includes temperature dependence produced a good fit, similar to
one of the diagenetic models. Since the mesocosms were always
well-oxygenated oxygen dependence of these parameterizations
turned out to be a hindrance in fitting the observations. The
parameterization that assumed dependence on oxygen only pro-
duced the poorest fit; the oxygen dependence in the other
parameterization was minimized during optimization producing
essentially a temperature-based parameterization.

Of the two diagenetic models analyzed, the more spatially
resolved and computationally expensive model fit the observa-
tions better. The fit in oxygen fluxes is similar between the two-
layer model and the simple temperature-dependent parameter-
ization, while the multi-layer model produced a better fit.

In cross-validation experiments the multi-layer model dis-
played the best predictive skill while the two-layer model essen-
tially failed the cross-validation; its ability to represent the
observations degraded even in comparison to the simple para-
meterization and to its unoptimized baseline parameter set. This
indicates that the two-layer model is prone to over-fitting, which
will result in a degradation of the model's predictive ability.

When considering different sediment model candidates for
inclusion in a biogeochemical model we recommend that the
candidate models be evaluated against each other through a
process of optimization and cross-validation as done here. Ideally
the models should be optimized with and evaluated against an
observational data set that represents the system of interest.
(In practice this is easier said than done, since comprehensive
sediment–water flux data sets are sparse.)

Further, we recommend that simple parameterizations be
considered as a viable option for representing sediments in
biogeochemical models. It was shown here that, contrary to
expectation, the simple, temperature-dependent parameterization
of sediment oxygen consumption has better predictive skill than
the two-layered diagenetic model in describing oxygen consump-
tion by the sediment. In terms of computational demands the
former is trivial while the latter requires a substantial investment.

Lastly, we would like to caution model users against the
temptation to judge models solely based on the biogeochemical
processes that they represent. Even though both diagenetic
models used here describe almost the same set of processes they
do so using different parameterizations and assumptions (some,
but not all, of these differences follow from their different spatial
framework) and one of them (the multi-layer model) performs
well in cross-validation while the other (the two-layer model)
essentially fails. Even though two models may describe the same
set of processes, different choices of how they are represented can
lead to very different predictive abilities.
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